PAGE
5

1. introduction
The main objective is to design a Patient Monitoring System to diagnose the health condition of the patients. Giving care and health assistance to the bed ridden patients at critical stages with advanced medical facilities have become one of the major problems in the modern hectic world. In hospitals where a large number of patients whose physical conditions have to be monitored frequently as a part of diagnostic procedure, the need for a cost effective and fast responding alert mechanism is inevitable. Proper implementation of such systems can provide timely warnings to the medical staffs and doctors and their service can be activated

in case of medical emergencies. Present-day systems use sensors that are hardwired to a PC next to the bed. The use of sensors detects the conditions of the patient and the data is collected and transferred using a microcontroller. Doctors and nurses need to visit the patient frequently to examine his/her current condition. In addition to this, use of multiple microcontroller based intelligent system provide high level applicability in hospitals where a large number of patients have to be frequently monitored. For this, here we use the idea of network technology with wireless applicability, providing each patient a unique ID by which the doctor can easily identify the patient and his/her current status of health parameters. Using the proposed system, data can be sent wirelessly to the Central Patient Monitoring System (CPMS), allowing continuous monitoring of the patient. Contributing accuracy in measurements and providing security in proper alert mechanism give this system a higher level of customer satisfaction and low cost implementation in hospitals. Thus the patient can engage in his daily activities in a comfortable atmosphere where distractions of hardwired sensors are not present. Physiological monitoring hardware can be easily implemented using simple interfaces of the sensors with a Microcontroller and can effectively be used for healthcare monitoring. This will allow development of such low cost devices based on natural human-computer interfaces. The system we proposed here is efficient in monitoring the different physical parameters of many number bedridden patients and then in alerting the concerned medical authorities if these parameters bounce above its predefined critical values. Thus remote monitoring and control refers to a field of industrial automation that is entering a new era with the development of wireless sensing devices.
2. Literature survey
2.1. Development and Clinical Evaluation of a Home Healthcare System Measuring in Toilet, Bathtub and Bed without Attachment of Any Biological Sensors
Kosuke Motoi, Mitsuhiro Ogawa, Hiroshi Ueno, Seiji Fukunaga, Tadahiko Yuji, Yuji Higashi,Shinobu Tanaka, Toshiro Fujimoto, Hidetsugu Asanoi, and Ken-ichi Yamakoshi, Member, IEEE
Daily monitoring of health condition at home is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes and cardiovascular diseases. While a number of commercially available devices for home health care monitoring are widely used, those are actually cumbersome in terms of self-attachment of biological sensors and self-operation of them. From this viewpoint, we have been developing a non-conscious physiological monitoring system without attachment of any

sensors to the human body as well as any operations for the measurement. We developed some devices installed in a toilet, a bath, and a bed and showed their high measurement precision by comparison with simultaneous recordings of ordinary biological sensors directly attached to the body. In order to investigate those applicability to the health condition monitoring, we developed a monitoring system in combination with all of the monitoring devices at hospital rooms and previously carried out the measurements of patients' health

condition. Further in this study, the health conditions were measured in 10 patients with cardiovascular disease or sleep disorder. From these results, the patients' health conditions

such as the body and excretion weight in the toilet, the ECG during taking the bath and the pulse and respiration rate during sleeping were successfully monitored in the hospital room,

demonstrating its usefulness for monitoring the health condition of the subjects with cardiovascular disease or sleep disorder.
2.2. INTELLIGENT WIRELESS MOBILE PATIENT MONITORING SYSTEM
Dr.(Mrs).R.Sukanesh, 2 S.Palanivel Rajan, 3 S.Vijayprasath, 4N.S.Aishwarya, 5P.Gracy Angela

1Professor, 2, 3 Research Scholars, 4,5Students,

Department of Electronics and Communication Engineering,

Thiagarajar College of Engineering, Madurai, Tamilnadu, India.

E-mail: drsukanesh/aishwaryaselvamohan/angela15sruthi/vijayprasathme/palanivelrajanme@gmail.com
Nowadays, Heart related diseases are on the rise. Cardiac arrest is quoted as the major contributor to sudden and unexpected death rate in the modern stress filled lifestyle around the globe. A system that warns the person about the onset of the disease earlier automatically will be a boon to the society. This is achievable by deploying advances in wireless technology to the existing patient monitoring system. This paper proposes the development of a module that provides mobility to the doctor and the patient, by adopting a simple and popular technique, detecting the abnormalities in the bio signal of the patient in advance and sending an alert sms to the doctor through Global system for Mobile(GSM) thereby taking suitable precautionary measures thus reducing the critical level of the patient. Worldwide surveys conducted by World Health Organization (WHO) have confirmed that the heart related diseases are on the rise. Many of the cardiac related problems are attributed to the modern lifestyles, food habits, obesity, smoking, tobacco chewing and lack of physical exercises etc. The post-operative patients can develop complications once they are discharged from the hospital. In some patients the cardiac problems may reoccur, when they start doing their routine work. Hence the ECG of such patients needs to be monitored for some time after their treatment. This helps in diagnosing the improper functioning of the heart and take precautions.. Some of these lives can often be saved if acute care and cardiac surgery is provided within the so-called golden hour. So the need for advice on first hand medical attention and promotion of good health by patient monitoring and follow-up becomes inevitable. Hence, patients who are at risk require that their cardiac health to be monitored frequently whether they are indoors or outdoors so that emergency treatment is possible. Telemedicine is widely considered to be part of the inevitable future of the modern practice of medicine.
2.3. The real-time monitoring system for in-patient based on Zigbee
Ping Wang1

1 Electric and Information College,

Xihua University, Chengdu, Sichuan, 610039, China

Ping_wang@126.com
The paper introduces a real-time monitoring system for in-patient. The system is made up of two sub-systems: patient physical states data acquisition and communication system based on Zigbee technology, and hospital monitoring and control centre. The patient physical states data acquisition and communication system monitors the main physical parameters and movement status continuously. The information from data acquisition system is sent to hospital monitoring centre by Zigbee wireless communication module. The monitoring

centre receives the information from each patient and save them to database, and then judges the states of patient by fuzzy reasoning. The data from patient can be displayed as graph or numeric on monitor if it is necessary, and then the doctor can diagnose the patient according to the recorded continuous data. Wireless sensor network is made up of a large quantity of wireless sensors based on Zigbee technology. The Zigbee technology provides a resolution for transmitting sensors’ data by wireless communication. Zigbee technology can transmit data with a rate of 250kbps, and then it is enough for the physical parameters of patient. The communication distance of Zigbee node can be over 200 meters, and can be spread by add route node, and then Zigbee technology is suited to short distance wireless sensors network. Zigbee technology owns many virtues, such as low power consumption, low cost, small size, free frequency, etc. To know the physical states of in-patient, the physical parameters need to be monitored real-time. The traditional medical test instrument is large size and connected by wire often, and the patient is required to be quiet during test. In most of hospital, the medical instruments need to be read by doctor or nurse, and the physical parameters are tested and recorded one or two times each day, the real-time monitoring is expensive for most of patients, and can be only acquirable for ICU by nurse. For this reason, the worsening of patient can’t be found in time, and then the patient can’t be helped in time. For most of patients can be monitored real-time in hospital, we should find new method. Consider that the movement of patient is limited in hospital, we adopted the Zigbee and wireless sensors network to acquire the physical parameters of patient.
3. Existing system
In the existing system, we use active network technology to network various sensors to a single PMS. Patients’ various critical parameters are continuously monitored via single PMS and reported to the Doctors or Nurses in attendance for timely response in case of critical situations. Our NWSPMS has the following basic components:

• Various sensors attached to the body of the patient.

• Microcontrollers for analog signal interface

• Wireless transmitting and receiving system for data transfer.

• A functional wireless network for different patients with their unique ID.

• A Central Patient Monitoring System (CPMS) observing unit basically a PC.

The sensors are attached to the body of the patients without causing any discomfort to them. In this NWSPMS we monitor the important physical parameters like body temperature, ECG, heart beat rate and blood pressure using the sensors which are readily available. Thus the analog values that are sensed by the different sensors are then given to a microcontroller attached with it. The microcontroller processes these analog signal values of health parameters separately and converts it to digital values using ADC converter. Now, the digitalized values from more than one microcontroller are sent to the CPMS. Each of the

entire sensors attached microcontroller with a transceiver will act as a module which has its own unique ID. Each module transmits the data wirelessly to the gateway attached to the PC

of the CPMS. The gateway is attached to the PC i.e. CPMS which is situated in the medical center, is capable for selecting different patient IDs and allowing the gateway to receive

different physical parameter values the patient specified by the ID. The software designed using Graphical User Interface (GUI) can operate on different physical parameters of each

patient, consecutively with a specified time interval for each patient. At any time any of the doctors or nurses can log on the CPMS and check the history of the observed critical parameters of any of the patient attached to the network. A wireless sensor mote is attached to the sensor set attached to each of the patients. The gateway of the Wireless Sensor Network is attached to the CPMS.
[image: image18.png]o]
bl

|
|

an

7

r

ot

IF [

MCROCONTROLLER

Fig 1: Block diagram of existing system
In case of a critical situation which requires immediate attention of the doctors or nurses for any of the patients, the custom software will instruct the CPMS to enable the GSM modem to send an SMS with the patient ID. A voice call is also made to the doctors and the staffs of the hospital. The SMS also consists of current status of the patient’s physical condition .With the help of the patient ID, the doctor can easily identify and attend to the patient situation. Fig 2. shows the flow chart for NWSPMS algorithm.
[image: image2.emf]
Fig 2 : Flow chart
SENSORS AND PARAMETERS
To implement the network based multiple-patient monitoring and alert mechanism, we use the following technologies and methodologies which will provide an active and user-friendly environment for the working of the system. Each technology we used are discussed in detail below.

A. Sensor Microcontroller Module

The Sensor Microcontroller module consists of four sensors which could measure parameters like

1) Body Temperature: Temperature sensors in the medical field have been used from time immemorial to measure the body temperature and monitor the medical condition of patients. With a temperature sensor attached to the body of the patients, measurement of absolute temperature of the patient will be accurate, and the system allows for continuous monitoring of a patient's differential change in temperature. The LM335 series are precision, easily-calibrated, integrated circuit temperature sensors. They are two terminal devices like

a zener and have a break down voltage directly proportional to the absolute temperature at +10mv/°K. The LM335 operates in the range of -40°C to +100°C as given in [6].LM335Z can measure temperature ranging from -40°C to +100°C. The output from the temperature sensor is an analog signal and it is fed into the analog input of the PIC16f877A microcontroller. Inside the microcontroller, the analog output from each sensor is converted to a 10 bit digital value using the ADC module present inside the microcontroller. The 10 bit ADC converted data is sent to the transmitter of the wireless sensor module via RC6 pin of PIC16F877A using USART module available in the PIC microcontroller.

2) Blood Pressure: Pressure sensors are important in medical conditions where patients have a frequently varying Blood pressure. These sensors will detect the blood pressure in the patient’s body. Adding wireless transmission and networking capability will take it to the next level of comfort and sophistication for a number of patients. Traditional blood pressure monitoring requires a cuff, wrapped around the upper arm and inflated until blood flow is completely cut off. The examiner then gradually releases the pressure, listening to the flow until the pulse can be detected. With the new monitor as in [4], no cuff is required. Instead,

the device takes advantage of a method called pulse wave velocity, which allows blood pressure to be calculated by measuring the pulse at two points along an artery. The two

points decided are two points of index figure. That posed a challenge because blood pressure in the hand varies depending on its position: If the arm is raised above the heart, the pressure will be higher than if it is below the heart. The researchers solved that dilemma by incorporating a sensor that measures acceleration in three dimensions, allowing the hand position to be calculated at any time. This not only compensates for the error due to height

changes, but also allows them to calibrate the sensor for more accurate calculation of blood pressure. As the wearer raises the hand up and down, the hydrostatic pressure changes at the

sensor. Correlating the change of pulse wave velocity to the hydrostatic pressure change, the system can automatically calibrate its measurement. The equivalent analog output signal will be fed to microcontroller.

3) Heart Rate: Heart rate is the number of heartbeats recorded per minute typically recorded as Beats per Minute (BPM) as in [7]. In the proposed system, we make use of a technique called Photoplethysmography (PPG). PPG is a simple and low cost optical technique that can be used to detect the blood volume changes in the micro vascular bed of tissues. In this technique, a bright led and a LDR is employed to detect the blood flow at the finger tip or any other peripheral part of the body. The light from the bright led gets reflected from the

tissues in the body parts and the amount of light reflected determines the volume of blood flowing. If more blood flows through it, more light is reflected back. We have to amplify the signal and remove the unwanted noise signals. For this purpose we make use of operational amplifiers, LM358. The circuit is shown below :

[image: image3.emf]
Circuit diagram of Heart rate sensor

4. PROPOSED SYSTEM
The main objective is to design a Patient Monitoring System with two way communication i.e not only the patients data will be sent to the doctor through SMS, but also doctor can send required suggestions to the patient, which will be displayed on LCD.

BLOCK DIAGRAM:

[image: image4]
Fig 4: Block diagram
5. MODULES
Mainly the block diagram consists of following parts:

· Power supply circuit

· Micro Controller

· ECG

· GSM modem

· Heart beat sensor

· Temperature sensor
POWER SUPPLY INTERNAL WORKING EXPLANATION:

Generally in India, we get 230v AC power supply from mains but we need only 3.3v DC supply for the LPC2148. The actual voltage what we get from the switch boards is 230v AC we need to convert this 230v AC into 3.3v DC by using a simple circuit. This circuit consists of transformer, bridge rectifier, and capacitor and voltage regulator. First the 230v AC power supply is given as input to the step down transformer (12-0)which step downs the 230v AC into 12v AC and from there we send 12v AC as an input to the bridge rectifier, the bridge rectifier converts the 12v ac into a pulsating 12v DC (still contains some AC components in it). Since the output of the bridge rectifier is not pure 12v DC we need a filter to filter all the remaining AC components so we are using capacitor as a filter. The 12v DC (pulsating) is sent to the capacitor (1000uf) it charges (like it in takes) whenever it finds the AC components and sends the DC components away from it. Then the output of the capacitor is pure 12v DC. Since we require only 3.3v DC then send 12v DC into a voltage regulator (LM317) which regulates the 12v DC into 3.3v DC which is the exact voltage supply required for LPC2148 controller. By this procedure, we are converting the output voltage to our desired voltage. The desired voltage is given to the VCC (pin) & VGND (pin) of LPC2148 microcontroller.

HOW TO INTERFACE DEVICES TO THE LPC2148 MICRO CONTROLLER

Interfacing RS-232 & MAX-232 to the LPC2148 Micro controller:

The RS232 is the most widely used serial I/O interfacing standard. This is used in most PC’s and numerous types of equipment. Since this standard was introduced long before the advent of TTL logic family, its input and output voltage levels are not TTL compatible.

In RS232, a ‘1’ is represented by -3v to -25v, while a ‘0’ bit is +3v to +25v and also making -3v to +3v is undefined. For this reason, to connect any RS232 to a micro controller system we must use voltage converts such as MAX232 to convert the TTL logic levels to the RS232 voltage levels, and vice versa. MAX232 chips are commonly referred to as line drivers. So to interface any GSM or GPS or RFID or FPRS modules RS232 and MAX232 are the used to interface to the micro controller for serial communication. The line drivers used for transmitting TXD in MAX232 are T1 (T1-in and T1-out) and T2 (T2-in and T2-out). The line drivers used for receiving the data is R1 (R1-in and R1-out) and R2 (R2-in and R2-out).

For transmitting the data to the other device the TXD pin of UART is connected to the T1-in pin-11 of MAX-232 and the T1-out pin14 of MAX232 is connected to RXD pin-2 of RS232 and from there data is transmitted to the device through the pin TXD pin-3 of RS232 cable.

 For receiving the data from the device the TXD pin-2 of RS232 is connected to the R1-in pin-13 of MAX232 and the R1-out pin-12 is connected to the RXD pin of UART of the controller hence the data is received by the controller.

Interfacing GSM to the LPC2148 micro controller:

The GSM modem interfaced to controller through MAX-232 and RS-232 cable. The GSM modem works by using AT commands. The GSM modem is initialized by using AT commands in code. For sending the message, receiving messages, message format and for deleting message everything is done by executing AT commands, for each and every task there is separate AT commands.

AT+CMGF = 1(for formatting message
 AT+CMGS = “mobile number”(for sending message
 AT+CMGR = “index number”(for reading message
 AT+CMGL (for listing all the messages in inbox
 AT+CMGD = “index number”(for deleting message

Total circuit internal working explanation:

These sensors are connected to pins of ARM7 like temperature sensor, heart beat sensor, sensor are connected to micro controller. Sensors sensed data will give to micro controller through ADC. ADC converts analog data to digital data and then data can send to doctors mobile by using GSM modem as a message. Once doctor receives message and checks abnormal conditions of patient and he can suggest medicine through SMS. The SMS is sent in response to patient room the GSM modem receives message and medicine name is displayed on LCD connected to controller through port pins. The temperature values are predefined in controller if the value is more than the predefined one then it is indication that person has fever and if it less it will display low.
ARM Architecture

ARM Architecture & Programming


ARM History


Architecture


ARM register file & modes of operation


Instruction Set

ARM History

The ARM (Acorn RISC Machine) architecture is developed at Acron Computer Limited of Cambridge, England between 1983-1985. ARM Limited founded in 1990. ARM became as the Advanced RISC Machine is a 32-bit RISC processor architecture that is widely used in embedded designs. ARM cores licensed to semiconductor partners who fabricate and sell to their customers.

Today, the ARM family accounts for approximately 75% of all embedded 32-bit RISC CPUs, making it the most widely used 32-bit architecture. ARM CPUs are found in most corners of consumer electronics, from portable devices (PDAs, mobile phones, iPods and other digital media and music players, handheld gaming units, and calculators) to computer peripherals (hard drives, desktop routers).

RISC:

RISC, or Reduced Instruction Set Computer. is a type of microprocessor architecture that utilizes a small, highly-optimized set of instructions, rather than a more specialized set of instructions often found in other types of architectures.

History:

The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed with a similar philosophy which has become known as RISC. Certain design features have been characteristic of most RISC processors:

•
one cycle execution time

•
pipelining

•
large number of registers

 Based upon RISC Architecture with enhancements to meet requirements of embedded applications ARM is having

1.
A large uniform register file

2.
Load-store architecture ,where data processing operations operate on register contents only

3.
Uniform and fixed length instructions

4.
32 -bit processor

5.
Instructions are 32-bit long

6.
Good Speed/Power Consumption Ratio

7.
High Code Density

A Von Neumann architecture store program and data in the same memory area with a single bus. So this bus only is used for both data transfers and instruction fetches, and therefore data transfers and instruction fetches must be scheduled - they can not be performed at the same time. Most of the general-purpose microprocessors such as Motorola 68000 and Intel 80x86 use this architecture. It is simple in hardware implementation, but the data and program are required to share a single bus.

ARM Processor Core :

The figure shows the ARM core dataflow model. In which the ARM core as functional units connected by data buses,. And the arrows represent the flow of data, the lines represent the buses, and boxes represent either an operation unit or a storage area. The figure shows not only the flow of data but also the abstract components that make up an ARM core.

 Fig : ARM core dataflow model

*ARM Bus Technology :

 Embedded systems use different bus technologies. Embedded devices use an on-chip bus that is internal to the chip and allows different peripheral devices to be inter connected with an ARM core.

There are two different types of devices connected to the bus

1.
Bus Master

2.
Bus Slave

1.
Bus Master : A logical device capable of initiating a data transfer with another device across the same bus (ARM processor core is a bus Master).

2.
Bus Slave : A logical device capable only of responding to a transfer request from a bus master device (Peripherals are bus slaves)

 Generally A Bus has two architecture levels

Physical level: Which covers electrical characteristics a bus width (16, 32, 64 bus).

 Protocol level: This deals with protocol

AMBA (Advanced Microcontroller Bus Architecture) Bus protocol:

 AMBA Bus was introduced in 1996 and has been widely adopted as the On Chip bus architecture used for ARM processors.

 The first AMBA buses were

1.
ARM System Bus (ASB)

2.
ARM Peripheral Bus (APB)

Later ARM introduced another bus design called the ARM High performance Bus (AHB)

Using AMBA

i.
Peripheral designers can reuse the same design on multiple projects

ii.
A Peripheral can simply be bolted on the On Chip bus without having to redesign an interface for each different processor architecture.

ARM introduced two variations on the AHB bus

1.
Multi-layer AHB

2.
AHB-Lite

ARCHITECTURE Revisions :

Every ARM processor implementation executes a specific instruction set architecture (ISA), although an ISA revision may have more than one processor implementation

NOMENCLATURE :

ARM uses the nomenclature shown below is to describe the processor implementations. The letters and numbers after the word “ARM” indicate the features a processor may have.

 ARM { x }{ y }{ z }{ T }{ D }{ M }{ I }{ E }{J }{ F }{ -S }

 x → family

 y → memory management / protection unit

 z → cache

 T → Thumb 16 bit decoder

 D → JTAG debug

 M → fast multiplier

 I → EmbeddedICE macrocell

 E → enhanced instruction (assumes TDMI)

 J → Jazelle

 F → vector floating-point unit

 S → synthesizible version


 All ARM cores after the ARM7TDMI include the TDMI features even though they may not include those letters after the “ ARM ” label


The processor family is a group of processor implementations that share the same hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all share the same family characteristics and belong to the ARM7 family


JTAG is described by IEEE 1149.1 standard Test Access Port and boundary scan architecture. It is a serial protocol used by ARM to send and receive debug information between the processor core and test equipment


EmbeddedICE macrocell is the debug hardware built into the processor that allows breakpoints and watchpoints to be set


Synthesizable means that the processor core is supplied as source code that can be compiled into a form easily used by EDA tools

Introduction to ARM7TDMI core

The ARM7TDMI core is a 32-bit embedded RISC processor delivered as a hard macrocell optimized to provide the best combination of performance, power and area characteristics. The ARM7TDMI core enables system designers to build embedded devices requiring small size, low power and high performance.

ARM7TDMI Features

•
32/16-bit RISC architecture (ARM v4T)

•
32-bit ARM instruction set for maximum performance and flexibility

•
16-bit Thumb instruction set for increased code density

•
Unified bus interface, 32-bit data bus carries both instructions and data

•
Three-stage pipeline

•
32-bit ALU

•
Very small die size and low power consumption

•
Fully static operation

•
Coprocessor interface

•
Extensive debug facilities (EmbeddedICE debug unit accessible via JTAG interface unit)

 ARM7TDMI Microcontrollers

1. Available ARM7TDMI Microcontrollers

2. Analog Devices ADuC 7xxx

3. Atmel AT91SAM7

4. Freescale MAC7100

5. NXP/Philips LPC2000

6. ST STR710

7.Texas Instruments TMS470

· ARM Register file & modes of operation
Registers : General Purpose registers hold either data or address they are identified with the letter r prefixed to the register number. All registers are of 32 bits.

 ARM has 37 registers in total, all of which are 32-bits long.

1 dedicated program counter

1 dedicated current program status register

5 dedicated saved program status registers

30 general purpose registers

However these are arranged into several banks, with the accessible bank being governed by the processor mode. Each mode can access a particular set of r0-r12 registers, a particular r13 (the stack pointer) and r14 (link register)‏, r15 (the program counter)‏, cpsr (the current program status register)‏

and privileged modes can also access a particular spsr (saved program status register)‏.

In user mode 16 data registers and 2 status registers are visible. Depending upon context, register r13 and r14 can also be used as General Purpose Registers. In ARM state the registers r0 to r13 are Orthogonal that means - any instruction which use r0 can as well be used with any other General Purpose Register (r1-r13)‏.

 The ARM processor has three registers assigned to a particular task or special function: r13,r14 and r15. They are frequently given different labels to differentiate them from the other registers.


Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack in the current processor mode


Register r14 is called the link register (lr) and is where the core puts the return address whenever it calls a subroutine.


Register r15 is the program counter (pc) and contains the address of the next instruction to be fetched by the processor

The register file contains all the registers available to a programmer. Which registers are visible to the programmer depend upon the current mode of the processor.

Current program status register :

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a dedicated 32-bit register and resides in the register file. The following figure shows the generic program status register.
The M0, M1, M2, M3 and M4 bits are the mode bits

Processor Modes: Processor modes determine which register are active, and access rights to CPSR register itself. Each processor mode is either Privileged or Non-privileged. ARM has seven modes. These 7 modes are divided into two types.

Privileged : Full read-write access to the CPSR. Under this we are having Abort, Fast interrupt request, Interrupt request, Supervisor,System and Undefined

 Abort (10111) : when there is a failed attempt to access memory

 Fast interrupt Request (FIQ(10001)) & interrupt request(10010) :
correspond to interrupt levels available on ARM

 Supervisor mode(10011) : state after reset and generally the mode in which OS kernel executes

 System mode(11111) : special version of user mode that allows full read-write access of CPSR

Undefined(11011) : when processor encounters an undefined instruction

Non-privileged :- Only read access to the control filed of CPSR but read-write access to the condition flags.

User(10000): User mode is user for programs and applications. And this the normal mode

Banked Registers :

Register file contains in all 37 registers. 20 registers are hidden from program at different times. These registers are called banked registers. Banked registers are available only when the processor is in a particular mode. Processor modes (other than system mode) have a set of associated banked registers that are subset of 16 register

SPSR:

Each privileged mode (except system mode) has associated with it a Save Program Status Register, or SPSR. This SPSR is used to save the state of CPSR (Current program status Register) when the privileged mode is entered in order that the user state can be fully restored when the user processor is resumed

Mode Changing :

Mode changes by writing directly to CPSR or by hardware when the processor responds to exception or interrupt. To return to user mode a special return instruction is used that instructs the core to restore the original CPSR and banked registers.

LPC 2148 MICROCONTROLLER

General description of LPC 2148:

 The LPC2148 microcontrollers is based on a 32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, that combine microcontrollers with embedded high-speed flash memory ranging from 32 kB to 512 kB. A 128-bit wide memory interface and unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 % with minimal performance penalty.

Due to their tiny size and low power consumption, LPC2141/42/44/46/48 are ideal for applications where miniaturization is a key requirement, such as access control and point-of-sale. Serial communications interfaces ranging from a USB 2.0 Full-speed device, multiple UARTs, SPI, SSP to I2C-bus and on-chip SRAM of 8 kB up to 40 kB, make these devices very well suited for communication gateways and protocol converters, soft modems, voice recognition and low end imaging, providing both large buffer size and high processing power. Various 32-bit timers, single or dual 10-bit ADCs, 10-bit DAC, PWM channels and 45 fast GPIO lines with up to nine edge or level sensitive external interrupt pins make these microcontrollers suitable for industrial control and medical systems.

General overview of in system programming (ISP):

In-System Programming (ISP) is a process whereby a blank device mounted to a circuit board can be programmed with the end-user code without the need to remove the device from the circuit board. Also, a previously programmed device can be erased and Re programmed without removal from the circuit board. In order to perform ISP operations the microcontroller is powered up in a special “ISP mode”. ISP mode allows the microcontroller to communicate with an external host device through the serial port, such as a PC or terminal. The microcontroller receives commands and data from the host, erases and reprograms code memory, etc. Once the ISP operations have been completed the device is reconfigured so that it will operate normally the next time it is either reset or power removed and reapplied. All of the Philips microcontrollers shown in Table 1 and Table 2 have a 1 kbyte factory-masked ROM located in the upper 1 kbyte of code memory space from FC00 to FFFF. This 1 kbyte ROM is in addition to the memory blocks shown in Table 1 and Table 2. This ROM is referred to as the “Bootrom”. This Bootrom contains a set of instructions which allows the microcontroller to perform a number of Flash programming and erasing functions. The Bootrom also provides communications through the serial port. The use of the Bootrom is key to the concepts of both ISP and In-Application Programming (IAP). The contents of the bootrom are provided by Philips and masked into every device. When the device is reset or power applied, and the EA/ pin is high or at the VPP voltage, the microcontroller will start executing instructions from either the user code memory space at address 0000h (“normal mode”) or will execute instructions from the Bootrom (ISP mode).
General Overview of IN APPLICATION PROGRAMMING:

Some applications may have a need to be able to erase and program code memory under the control fo the application. For example, an application may have a need to store calibration information or perhaps need to be able to download new code portions. This ability to erase and program code memory in the end-user application is “In-Application Programming” (IAP). The Bootrom routines which perform functions on the Flash memory during ISP mode such as programming, erasing, and reading, are also available to end-user programs. Thus it is possible for an end-user application to perform operations on the Flash memory. A common entry point (FFF0h) to these routines has been provided to simplify interfacing to the end-users application. Functions are performed by setting up specific registers as required by a specific operation and performing a call to the common entry point. Like any other subroutine call, after completion of the function, control will return to the end-user’s code. The Bootrom is shadowed with the user code memory in the address range from FC00h to FFFFh. This shadowing is controlled by the ENBOOT bit (AUXR1.5). When set, accesses to internal code memory in this address range will be from the boot ROM. When cleared, accesses will be from the user’s code memory. It will be NECESSARY for the end-user’s code to set the ENBOOT bit prior to calling the common entry point for IAP operations, even for devices with 16 kbyte, 32 kbyte, and 64 kbyte of internal code memory. (ISP operation is selected by certain hardware conditions and control of the ENBOOT bit is automatic when ISP mode is activated).

FEATURES OF LPC2148(ARM7) ARCHITECTURE

Key features:


16-bit/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64 package


8 kB to 40 kB of on-chip static RAM and 32 kB to 512 kB of on-chip flash memory; 128-bit wide interface/accelerator enables high-speed 60 MHz operation


In-System Programming/In-Application Programming (ISP/IAP) via on-chip boot loader software, single flash sector or full chip erase in 400 ms and programming of 256 B in 1 ms.


Embedded ICE RT and Embedded Trace interfaces offer real-time debugging with the on-chip Real Monitor software and high-speed tracing of instruction execution

 USB 2.0 Full-speed compliant device controller with 2 kB of endpoint RAM


In addition, the LPC2146/48 provides 8 kB of on-chip RAM accessible to USB by DMA


One or two (LPC2141/42 vs, LPC2144/46/48) 10-bit ADCs provide a total of 6/14 analog inputs, with conversion times as low as 2.44 ms per channel Single 10-bit DAC provides variable analog output (LPC2142/44/46/48 only)


Two 32-bit timers/external event counters (with four capture and four compare

channels each), PWM unit (six outputs) and watchdog.


Low power Real-Time Clock (RTC) with independent power and 32 kHz clock input


Multiple serial interfaces including two UARTs (16C550), two Fast I2C-bus (400 kbit/s),

 SPI and SSP with buffering and variable data length capabilities


Vectored Interrupt Controller (VIC) with configurable priorities and vector addresses


Up to 45 of 5 V tolerant fast general purpose I/O pins in a tiny LQFP64 package


Up to 21 external interrupt pins available


60 MHz maximum CPU clock available from programmable on-chip PLL with settling

 time of 100 ms


On-chip integrated oscillator operates with an external crystal from 1 MHz to 25 MHz


Power saving modes include Idle and Power-down


Individual enable/disable of peripheral functions as well as peripheral clock scaling for additional power optimization


Processor wake-up from Power-down mode via external interrupt or BOD


Single power supply chip with POR and BOD circuits:

CPU operating voltage range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.
BLOCK DIAGRAM:
[image: image5.emf]
Fig 5 : Block diagram of LPC 2148
PIN CONFIGURATION:
[image: image6.emf]
Fig 6 : Pin configuration of LPC2148

Pin Description:

P0.0 to P0.31 I/O Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit. Total of 31 pins of the Port 0 can be used as a general purpose bidirectional digital I/Os while P0.31 is output only pin. The operation of port 0 pins depends upon the pin function selected via the pin connect block.

P0.0/TXD0/PWM1:

 P0.0 — General purpose input/output digital pin (GPIO)

 TXD0 — Transmitter output for UART0

 PWM1 — Pulse Width Modulator output 1

P0.1/RXD0/PWM3/EINT0:

P0.1 — General purpose input/output digital pin (GPIO)

RXD0 — Receiver input for UART0

 PWM3 — Pulse Width Modulator output 3

 EINT0 — External interrupt 0 input

P0.2/SCL0/ CAP0.0:

 P0.2 — General purpose input/output digital pin (GPIO)

 SCL0 — I2C0 clock input/output, open-drain output (for I2C-bus compliance)

 CAP0.0 — Capture input for Timer 0, channel 0

P0.3/SDA0/ MAT0.0/EINT1:

P0.3 — General purpose input/output digital pin (GPIO)

SDA0 — I2C0 data input/output, open-drain output (for I2C-bus compliance)

MAT0.0 — Match output for Timer 0, channel 0

EINT1 — External interrupt 1 input

P0.4/SCK0/ CAP0.1/AD0.6

P0.4 — General purpose input/output digital pin (GPIO)

SCK0 — Serial clock for SPI0, SPI clock output from master or input to slave

CAP0.1 — Capture input for Timer 0, channel 0

AD0.6 — ADC 0, input 6.

P0.5/MISO0/ MAT0.1/AD0.7

P0.5 — General purpose input/output digital pin (GPIO)

MISO0 — Master In Slave OUT for SPI0, data input to SPI master or data output from SPI slave.

MAT0.1 — Match output for Timer 0, channel 1

AD0.7 — ADC 0, input 7

P0.6/MOSI0/ CAP0.2/AD1.0

P0.6 — General purpose input/output digital pin (GPIO)

MOSI0 — Master out Slave In for SPI0, data output from SPI master or data Input to SPI slave

CAP0.2 — Capture input for Timer 0, channel 2

AD1.0 — ADC 1, input 0, available in LPC2144/46/48 only

P0.7/SSEL0/PWM2/EINT2

P0.7 — General purpose input/output digital pin (GPIO)

SSEL0 — Slave Select for SPI0, selects the SPI interface as a slave

PWM2 — Pulse Width Modulator output 2

EINT2 — External interrupt 2 input

P0.8/TXD1/PWM4/AD1.1

P0.8 — General purpose input/output digital pin (GPIO)

TXD1 — Transmitter output for UART1

PWM4 — Pulse Width Modulator output 4

AD1.1 — ADC 1, input 1, available in LPC2144/46/48 only

P0.9/RXD1/ PWM6/EINT3:

P0.9 — General purpose input/output digital pin (GPIO)

RXD1 — Receiver input for UART1

PWM6 — Pulse Width Modulator output 6

EINT3 — External interrupt 3 input

P0.10/RTS1/ CAP1.0/AD1.2:

P0.10 — General purpose input/output digital pin (GPIO)

RTS1 — Request to send output for UART1, LPC2144/46/48 only

CAP1.0 — Capture input for Timer 1, channel 0

AD1.2 — ADC 1, input 2, available in LPC2144/46/48 only

P0.11/CTS1/ CAP1.1/SCL1:

P0.11 — General purpose input/output digital pin (GPIO)

CTS1 — Clear to send input for UART1, available in LPC2144/46/48 only

CAP1.1 — Capture input for Timer 1, channel 1

SCL1 — I2C1 clock input/output, open-drain output (for I2C-bus compliance)

P0.12/DSR1/MAT1.0/AD1.3:

P0.12 — General purpose input/output digital pin (GPIO)

DSR1 — Data Set Ready input for UART1, available in LPC2144/46/48 only

MAT1.0 — Match output for Timer 1, channel 0

AD1.3 — ADC input 3, available in LPC2144/46/48 only

P0.13/DTR1/ MAT1.1/AD1.4:

P0.13 — General purpose input/output digital pin (GPIO)

DTR1 — Data Terminal Ready output for UART1, LPC2144/46/48 only

MAT1.1 — Match output for Timer 1, channel 1

AD1.4 — ADC input 4, available in LPC2144/46/48 only

P0.14/DCD1/EINT1/SDA1:

P0.14 — General purpose input/output digital pin (GPIO)

DCD1 — Data Carrier Detect input for UART1, LPC2144/46/48 only

EINT1 — External interrupt 1 input

SDA1 — I2C1 data input/output, open-drain output (for I2C-bus compliance LOW on this pin while RESET is LOW forces on-chip boot loader to take over control of the part after reset

P0.15/RI1/ EINT2/AD1.5:

P0.15 — General purpose input/output digital pin (GPIO)

RI1 — Ring Indicator input for UART1, available in LPC2144/46/48 only

EINT2 — External interrupt 2 input

AD1.5 — ADC 1, input 5, available in LPC2144/46/48 only

P0.16/EINT0/MAT0.2/CAP0.2:

P0.16 — General purpose input/output digital pin (GPIO)

EINT0 — External interrupt 0 input

MAT0.2 — Match output for Timer 0, channel 2

CAP0.2 — Capture input for Timer 0, channel 2

P0.17/CAP1.2/ SCK1/MAT1.2:

P0.17 — General purpose input/output digital pin (GPIO)

CAP1.2 — Capture input for Timer 1, channel 2

SCK1 — Serial Clock for SSP, clock output from master or input to slave

MAT1.2 — Match output for Timer 1, channel 2

P0.18/CAP1.3/MISO1/MAT1.3:

P0.18 — General purpose input/output digital pin (GPIO)

CAP1.3 — Capture input for Timer 1, channel 3

MISO1 — Master In Slave Out for SSP, data input to SPI master or data output from SSP slave

MAT1.3 — Match output for Timer 1, channel 3

P0.19/MAT1.2/MOSI1/CAP1.2:

P0.19 — General purpose input/output digital pin (GPIO)

MAT1.2 — Match output for Timer 1, channel 2

MOSI1 — Master out Slave In for SSP, data output from SSP master or data Input to SSP slave

CAP1.2 — Capture input for Timer 1, channel 2

P0.20/MAT1.3/SSEL1/EINT3:

P0.20 — General purpose input/output digital pin (GPIO)

MAT1.3 — Match output for Timer 1, channel 3

SSEL1 — Slave Select for SSP, selects the SSP interface as a slave

EINT3 — External interrupt 3 input

P0.21/PWM5/AD1.6/CAP1.3:

P0.21 — General purpose input/output digital pin (GPIO)

PWM5 — Pulse Width Modulator output 5

AD1.6 — ADC 1, input 6, available in LPC2144/46/48 only

CAP1.3 — Capture input for Timer 1, channel 3

P0.22/AD1.7/CAP0.0/MAT0.0:

P0.22 — General purpose input/output digital pin (GPIO)

AD1.7 — ADC 1, input 7, available in LPC2144/46/48 only

CAP0.0 — Capture input for Timer 0, channel 0

MAT0.0 — Match output for Timer 0, channel 0

P0.23/VBUS:

P0.23 — General purpose input/output digital pin (GPIO)

VBUS — Indicates the presence of USB bus power

This signal must be HIGH for USB reset to occur

P0.25/AD0.4/AOUT:

P0.25 — General purpose input/output digital pin (GPIO)

AD0.4 — ADC 0, input 4

AOUT — DAC output, available in LPC2142/44/46/48 only

P0.28/AD0.1/CAP0.2/MAT0.2:

P0.28 — General purpose input/output digital pin (GPIO)

AD0.1 — ADC 0, input 1

CAP0.2 — Capture input for Timer 0, channel 2

MAT0.2 — Match output for Timer 0, channel 2

P0.29/AD0.2/CAP0.3/MAT0.3:

P0.29 — General purpose input/output digital pin (GPIO)

AD0.2 — ADC 0, input 2

CAP0.3 — Capture input for Timer 0, Channel 3

MAT0.3 — Match output for Timer 0, channel 3

P0.30/AD0.3/EINT3/CAP0.0:

P0.30 — General purpose input/output digital pin (GPIO)

AD0.3 — ADC 0, input 3

EINT3 — External interrupt 3 input

CAP0.0 — Capture input for Timer 0, channel 0

P0.31/UP_LED/CONNECT

P0.31 — General purpose output only digital pin (GPO)

UP_LED — USB Good Link LED indicator, it is LOW when device is configured (non-control endpoints enabled), it is HIGH when the device is not configured or during global suspend

CONNECT — Signal used to switch an external 1.5 kohms resistor under the

Software control, used with the Soft Connect USB feature

Important: This is a digital output only pin, this pin MUST NOT be externally pulled LOW when RESET pin is LOW or the JTAG port will be disabled P1.0 to P1.31 I/O Port 1: Port 1 is a 32-bit bidirectional I/O port with individual direction controls for each bit, the operation of port 1 pins depends upon the pin function selected via the pin connect block, pins 0 through 15 of port 1 are not Available.

P1.16/TRACEPKT0

P1.16 — General purpose input/output digital pin (GPIO)

TRACEPKT0 — Trace Packet, bit 0, standard I/O port with internal pull-up

P1.17/TRACEPKT1

P1.17 — General purpose input/output digital pin (GPIO)

TRACEPKT1 — Trace Packet, bit 1, standard I/O port with internal pull-up

P1.18/TRACEPKT2

P1.18 — General purpose input/output digital pin (GPIO)

TRACEPKT2 — Trace Packet, bit 2, standard I/O port with internal pull-up

P1.19/TRACEPKT3

P1.19 — General purpose input/output digital pin (GPIO)

TRACEPKT3 — Trace Packet, bit 3, standard I/O port with internal pull-up

P1.20/TRACESYNC

P1.20 — General purpose input/output digital pin (GPIO)

TRACESYNC — Trace Synchronization, standard I/O port with internal pull-up

P1.21/PIPESTAT0

P1.21 — General purpose input/output digital pin (GPIO)

PIPESTAT0 — Pipeline Status, bit 0, standard I/O port with internal pull-up

P1.22/PIPESTAT1

P1.22 — General purpose input/output digital pin (GPIO)

PIPESTAT1 — Pipeline Status, bit 1, standard I/O port with internal pull-up

P1.23/PIPESTAT2

P1.23 — General purpose input/output digital pin (GPIO)

PIPESTAT2 — Pipeline Status, bit 2, standard I/O port with internal pull-up

P1.24/TRACECLK

P1.24 — General purpose input/output digital pin (GPIO)

TRACECLK — Trace Clock, standard I/O port with internal pull-up

P1.25/EXTIN0

P1.25 — General purpose input/output digital pin (GPIO)

EXTIN0 — External Trigger Input, standard I/O with internal pull-up

P1.26/RTCK

P1.26 — General purpose input/output digital pin (GPIO)

RTCK — Returned Test Clock output, extra signal added to the JTAG port, assists debugger synchronization when processor frequency varies, bidirectional pin with internal pull-up

P1.27/TDO

P1.27 — General purpose input/output digital pin (GPIO)

TDO — Test Data out for JTAG interface

P1.28/TDI

P1.28 — General purpose input/output digital pin (GPIO)

TDI — Test Data in for JTAG interface

P1.29/TCK

 P1.29 — General purpose input/output digital pin (GPIO)

TCK — Test Clock for JTAG interface

P1.30/TMS

P1.30 — General purpose input/output digital pin (GPIO)

TMS — Test Mode Select for JTAG interface

P1.31/TRST

P1.31 — General purpose input/output digital pin (GPIO)

TRST — Test Reset for JTAG interface

D+: USB bidirectional D+ line

D- : USB bidirectional D- line

RESET External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0, TTL with hysteretic, 5 V tolerant

XTAL1: Input to the oscillator circuit and internal clock generator circuits

XTAL2: Output from the oscillator amplifier

RTCX1: I Input to the RTC oscillator circuit

RTCX2: Output from the RTC oscillator circuit

VSS: 6, 18, 25, 42, 50 pins are for supply voltage.

Ground: 0 V reference.

VSSA Analog ground: 0 V reference, this should nominally be the same voltage as VSS, but should be isolated to minimize noise and error

VDD 23, 43, 51 I 3.3 V power supply: This is the power supply voltage for the core and I/O ports.

VDDA 7 I Analog 3.3 V power supply: This should be nominally the same voltage as VDD but should be isolated to minimize noise and error, this voltage is only used to power the on-chip ADC(s) and DAC

VREF ADC reference voltage: This should be nominally less than or equal to the

VDD voltage but should be isolated to minimize noise and error, level on this

Pin is used as a reference for ADC(s) and DAC

VBAT RTC power supply voltage: 3.3 V on this pin supplies the power to the RTC.

Functional Description:


 Architectural Overview:

 The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high performance and very low power consumption. The ARM architecture is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode mechanism are much simpler than those of micro programmed Complex Instruction Set Computers (CISC). This simplicity results in a high instruction throughput.

Essentially, the ARM7TDMI-S processor has two instruction sets:

• The standard 32-bit ARM set

• A 16-bit Thumb set

The Thumb set’s 16-bit instruction length allows it to approach twice the density of standard ARM code while retaining most of the ARM’s performance advantage over a traditional 16-bit processor using 16-bit registers. This is possible because Thumb code operates on the same 32-bit register set as ARM code. Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the performance of an equivalent ARM processor connected to a 16-bit memory system. The particular flash implementation in the LPC2141/42/44/46/48 allows for full speed execution also in ARM mode. It is recommended to program performance critical and short code sections (such as interrupt service routines and DSP algorithms) in ARM mode. The impact on the overall code size will be minimal but the speed can be increased by 30 % over Thumb mode.


On-Chip Flash Program memory:

The LPC2141/42/44/46/48 incorporate a 32 kB, 64 kB, 128 kB, 256 kB and 512 kB flash memory system respectively. This memory may be used for both code and data storage. Programming of the flash memory may be accomplished in several ways. It may be programmed In System via the serial port. The application program may also erase and/or program the flash while the application is running, allowing a great degree of flexibility for data storage field firmware upgrades, etc. Due to the architectural solution chosen for an on-chip boot loader, flash memory available for user’s code on LPC2141/42/44/46/48 is 32 kB, 64 kB, 128 kB, 256 kB and 500 kB respectively.

 The LPC2141/42/44/46/48 flash memory provides a minimum of 100000 erase/write cycles and 20 years of data-retention.


On-Chip Static RAM:

 On-chip static RAM may be used for code and/or data storage. The SRAM may be accessed as 8-bit, 16-bit, and 32-bit. The LPC2141, LPC2142/44 and LPC2146/48 provide 8 kB, 16 kB and 32 kB of static RAM respectively. In case of LPC2146/48 only, an 8 kB SRAM block intended to be utilized mainly by the USB can also be used as a general purpose RAM for data storage and code storage and execution.


Memory Map

 The LPC2141/42/44/46/48 memory map incorporates several distinct regions, as shown below.


Interrupt controller:

 The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and categorizes them as Fast Interrupt Request (FIQ), vectored Interrupt Request (IRQ), and non-vectored IRQ as defined by programmable settings. The programmable assignment scheme means that priorities of interrupts from the various peripherals can be dynamically assigned and adjusted. Fast interrupt request (FIQ) has the highest priority.

 Interrupt Sources:

 Each peripheral device has one interrupt line connected to the Vectored Interrupt Controller, but may have several internal interrupt flags. Individual interrupt flags may also represent more than one interrupt source.


Pin Connect Block:

 The pin connect block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on chip peripherals. Peripherals should be connected to the appropriate pins prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.


Fast General purpose Parallel I/O:

 Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow the setting or clearing of any number of outputs simultaneously. The value of the output register may be read back, as well as the current state of the port pins. LPC2141/42/44/46/48 introduces accelerated GPIO functions over prior LPC2000 devices:


10 bit ADC:

 The LPC2141/42 contain one and the LPC2144/46/48 contain two analog to digital converters. These converters are single 10-bit successive approximation analog to digital converters. While ADC0 has six channels, ADC1 has eight channels. Therefore, total number of available ADC inputs for LPC2141/42 is 6 and for LPC2144/46/48 is 14.


10 bit DAC:

The DAC enables the LPC2141/42/44/46/48 to generate a variable analog output. The maximum DAC output voltage is the VREF voltage.


USB 2.0 Device controller:

 The USB is a 4-wire serial bus that supports communication between a host and a number (127 max) of peripherals. The host controller allocates the USB bandwidth to Attached devices through a token based protocol

 The LPC2141/42/44/46/48 is equipped with a USB device controller that enables 12 Mbit/s data exchange with a USB host controller. It consists of a register interface, serial interface engine, endpoint buffer memory and DMA controller.


UARTS:

 The LPC2141/42/44/46/48 each contains two UARTs. In addition to standard transmit and receive data lines, the LPC2144/46/48 UART1 also provide a full modem control handshake interface. Compared to previous LPC2000 microcontrollers, UARTs in LPC2141/42/44/46/48 introduce a fractional baud rate generator for both UARTs, enabling these microcontrollers to achieve standard baud rates such as 115200 with any crystal frequency above 2 MHz. In addition, auto-CTS/RTS flow-control functions are fully implemented in hardware (UART1 in LPC2144/46/48 only).


I2C Bus Serial I/O Controller

 The LPC2141/42/44/46/48 each contains two I2C-bus controllers.

The I2C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line (SCL), and a serial data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with the capability to both receive and send information (such as memory)). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus; it can be controlled by more than one bus master connected to it. The I2C-bus implemented in LPC2141/42/44/46/48 supports bit rates up to 400 kbit/s (Fast I2C-bus).


SPI Serial I/O Controller:

 The LPC2141/42/44/46/48 each contain one SPI controller. The SPI is a full duplex serial interface, designed to handle multiple masters and slaves connected to a given bus. Only a single master and a single slave can communicate on the interface during a given data transfer. During a data transfer the master always sends a byte of data to the slave, and the slave always sends a byte of data to the master.


SSP Serial I/O Controller

 The LPC2141/42/44/46/48 each contains one SSP. The SSP controller is capable of operation on a SPI, 4-wire SSI, or Micro wire bus. It can interact with multiple masters and slaves on the bus. However, only a single master and a single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers, with data frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. Often only one of these data flows carries meaningful data.


General Purpose timers/external event counters

 The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and optionally generate interrupts or perform other actions at specified timer values, based on four match registers. It also includes four capture inputs to trap the timer value when an input signals transitions, optionally generating an interrupt. Multiple pins can be selected to perform a single capture or match function, providing an application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them. The LPC2141/42/44/46/48 can count external events on one of the capture inputs if the minimum external pulse is equal or longer than a period of the PCLK.


Watchdog Timer

 The purpose of the watchdog is to reset the microcontroller within a reasonable amount of time if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined amount of time.


Real Time Clock:

 The RTC is designed to provide a set of counters to measure time when normal or idle operating mode is selected. The RTC has been designed to use little power, making it suitable for battery powered systems where the CPU is not running continuously (Idle mode).


Pulse width modulator

 The PWM is based on the standard timer block and inherits all of its features, although only the PWM function is pinned out on the LPC2141/42/44/46/48. The timer is designed to count cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform other actions when specified timer values occur, based on seven match registers. The PWM function is also based on match register events.


System Control

 1. Crystal Oscillator:

 On-chip integrated oscillator operates with external crystal in range of 1 MHz to 25 MHz. The oscillator output frequency is called fosc and the ARM processor clock frequency is referred to as CCLK for purposes of rate equations, etc. fosc and CCLK are the same value unless the PLL is running and connected.

 2. PLL:

 The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The PLL settling time is 100 ms.

 3. Reset and Wake up Timer:

 Reset has two sources on the LPC2141/42/44/46/48: the RESET pin and watchdog reset. The RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip reset by any source starts the Wake-up Timer (see Wake-up Timer description below), causing the internal chip reset to remain asserted until the external reset is de-asserted, the oscillator is running, a fixed number of clocks have passed, and the on-chip flash controller has completed its initialization

 4. Brown out Detector

 The LPC2141/42/44/46/48 includes 2-stage monitoring of the voltage on the VDD pins. If this voltage falls below 2.9 V, the BOD asserts an interrupt signal to the VIC. This signal can be enabled for interrupt; if not, software can monitor the signal by reading dedicated register.

 5. Code Security

 This feature of the LPC2141/42/44/46/48 allows an application to control whether it can be debugged or protected from observation. If after reset on-chip boot loader detects a valid checksum in flash and reads 0x8765 4321 from address 0x1FC in flash, debugging will be disabled and thus the code in flash will be protected from observation. Once debugging is disabled, it can be enabled only by performing a full chip erase using the ISP.

 6. External Interrupt Inputs:

 The LPC2141/42/44/46/48 include up to nine edge or level sensitive External Interrupt Inputs as selectable pin functions. When the pins are combined, external events can be processed as four independent interrupt signals. The External Interrupt Inputs can optionally be used to wake-up the processor from Power-down mode. Additionally capture input pins can also be used as external interrupts without the option to wake the device up from Power-down mode.

 7. Memory Mapping Control

 The Memory Mapping Control alters the mapping of the interrupt vectors that appear beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip flash memory, or to the on-chip static RAM. This allows code running in different memory spaces to have control of the interrupts.

 8. Power Control:

 The LPC2141/42/44/46/48 supports two reduced power modes: Idle mode and Power-down mode.

 9. VPB BUS:

 The VPB divider determines the relationship between the processor clock (CCLK) and the clock used by peripheral devices (PCLK). The VPB divider serves two purposes. The first is to provide peripherals with the desired PCLK via VPB bus so that they can operate at the speed chosen for the ARM processor. In order to achieve this, the VPB bus may be slowed down to 1¤2 to 1¤4 of the processor clock rate. Because the VPB bus must work properly at power-up (and its timing cannot be altered if it does not work since the VPB divider control registers reside on the VPB bus), the default condition at reset is for the VPB bus to run at 1¤4 of the processor clock rate. The second purpose of the VPB divider is to allow power savings when an application does not require any peripherals to run at the full processor rate. Because the VPB divider is connected to the PLL output, the PLL remains active (if it was running) during Idle mode.

 10. Emulation and Debugging:

The LPC2141/42/44/46/48 support emulation and debugging via a JTAG serial port. A trace port allows tracing program execution. Debugging and trace functions are multiplexed only with GPIOs on Port 1. This means that all communication, timer and interface peripherals residing on Port0 are available during the development and debugging phase as they are when the application is run in the embedded system

 11. Embedded ICE

 Standard ARM Embedded ICE logic provides on-chip debug support. The debugging of the target system requires a host computer running the debugger software and an Embedded ICE protocol converter. Embedded ICE protocol converter converts the remote debug protocol commands to the JTAG data needed to access the ARM core.

12. Embedded Trace:

 Since the LPC2141/42/44/46/48 have significant amounts of on-chip memory, it is not possible to determine how the processor core is operating simply by observing the external pins. The Embedded Trace Macro cell (ETM) provides real-time trace capability for deeply embedded processor cores. It outputs information about processor execution to the trace port. The ETM is connected directly to the ARM core and not to the main AMBA system bus. It compresses the trace information and exports it through a narrow trace port.

 13. Real Monitor:

 Real Monitor is a configurable software module, developed by ARM Inc., which enables real-time debug. It is a lightweight debug monitor that runs in the background while users debug their foreground application. It communicates with the host using the DCC, which is present in the Embedded ICE logic. The LPC2141/42/44/46/48 contains a specific configuration of Real Monitor software programmed into the on-chip flash memory.

REGULATED POWER SUPPLY

 A variable regulated power supply, also called a variable bench power supply, is one where you can continuously adjust the output voltage to your requirements. Varying the output of the power supply is the recommended way to test a project after having double checked parts placement against circuit drawings and the parts placement guide.

This type of regulation is ideal for having a simple variable bench power supply. Actually this is quite important because one of the first projects a hobbyist should undertake is the construction of a variable regulated power supply. While a dedicated supply is quite handy ,it's much handier to have a variable supply on hand, especially for testing.

Mainly the ARM controller needs 3.3 volt power supply. To use these parts we need to build a regulated 3.3 volt source. Usually you start with an unregulated power To make a 3.3 volt power supply, we use a LM317 voltage regulator IC (Integrated Circuit). The IC is shown below.

CIRCUIT FEATURES:-

Vout range
1.25V - 37V

Vin - Vout difference
3V - 40V

Operation ambient temperature
0 - 125°C

Output Imax
<1.5A

Minimum Load Currentmax
10Ma

A current-limiting circuit constructed with LM317

 Part pinout of LM317 showing its constant voltage reference

LM317 is the standard part number for an integrated three-terminal adjustable linear voltage regulator. LM317 is a positive voltage regulator supporting input voltage of 3V to 40V and output voltage between 1.25V and 37V. A typical current rating is 1.5A although several lower and higher current models are available. Variable output voltage is achieved by using a potentiometer or a variable voltage from another source to apply a control voltage to the control terminal. LM317 also has a built-in current limiter to prevent the output current from exceeding the rated current, and LM317 will automatically reduce its output current if an overheat condition occurs under load. LM317 is manufactured by many companies, including National Semiconductor, Fairchild Semiconductor, and STMicroelectronics.

Although LM317 is an adjustable regulator, it is sometimes preferred for high-precision fixed voltage applications instead of the similar LM78xx devices because the LM317 is designed with superior output tolerances. For a fixed voltage application, the control pin will typically be biased with a fixed resistor network, a Zener diode network, or a fixed control voltage from another source. Manufacturer datasheets provide standard configurations for achieving various design applications, including the use of a pass transistor to achieve regulated output currents in excess of what the LM317 alone can provide.

LM317 is available in a wide range of package forms for different applications including heat sink mounting and surface-mount applications. Common form factors for high-current applications include TO-220 and TO-3. LM317 is capable of dissipating a large amount of heat at medium to high current loads and the use of a heat sink is recommended to maximize the lifespan and power-handling capability.

LM337 is the negative voltage complement to LM317 and the specifications and function are essentially identical, except that the regulator must receive a control voltage and act on an input voltage that are below the ground reference point instead of above it.
GSM

Global System for Mobile communications (GSM): originally from Groupe Spécial Mobile) is the most popular standard for mobile phones in the world. Its promoter, the GSM Association, estimates that 82% of the global mobile market uses the standard GSM is used by over 2 billion people across more than 212 countries and territories. Its ubiquity makes international roaming very common between mobile phone operators, enabling subscribers to use their phones in many parts of the world. GSM differs from its predecessors in that both signaling and speech channels are digital call quality, and thus is considered a second generation (2G) mobile phone system. This has also meant that data communication was built into the system using the 3rd Generation Partnership Project (3GPP).

The ubiquity of the GSM standard has been advantageous to both consumers (who benefit from the ability to roam and switch carriers without switching phones) and also to network operators (who can choose equipment from any of the many vendors implementing GSM. GSM also pioneered a low-cost alternative to voice calls, the Short message service (SMS, also called "text messaging"), which is now supported on other mobile standards as well.

Newer versions of the standard were backward-compatible with the original GSM phones. For example, Release '97 of the standard added packet data capabilities, by means of General Packet Radio Service (GPRS). Release '99 introduced higher speed data transmission using Enhanced Data Rates for GSM Evolution (EDGE)

GSM (Global System for Mobile communication) is a digital mobile telephone system that is widely used in Europe and other parts of the world. GSM uses a variation of Time Division Multiple Access (TDMA) and is the most widely used of the three digital wireless telephone technologies (TDMA, GSM, and CDMA). GSM digitizes and compresses data, then sends it down a channel with two other streams of user data, each in its own time slot. It operates at either the 900 MHz or 1,800 MHz frequency band.

GSM is the de facto wireless telephone standard in Europe. GSM has over one billion users worldwide and is available in 190 countries. Since many GSM network operators have roaming agreements with foreign operators, users can often continue to use their mobile phones when they travel to other countries.

Mobile Frequency RangeRx : 925-960; Tx: 880-915

Multiple Access Method : TDMA/FDM

Duplex Method : FDD

Number of Channels1 : 24 (8 users per channel)

Channel Spacing : 200kHz

Modulation : GMSK (0.3 Gaussian Filter)

 Channel Bit Rate : 270.833Kb

History
In 1982, the European Conference of Postal and Telecommunications Administrations (CEPT) created the Groupe Spécial Mobile (GSM) to develop a standard for a mobile telephone system that could be used across Europe.[5] In 1987, a memorandum of understanding was signed by 13 countries to develop a common cellular telephone system across Europe.[6]

HYPERLINK "http://en.wikipedia.org/wiki/GSM" \l "_note-6"[7]
In 1989, GSM responsibility was transferred to the European Telecommunications Standards Institute (ETSI) and phase I of the GSM specifications were published in 1990. The first GSM network was launched in 1991 by Radiolinja in Finland with joint technical infrastructure maintenance from Ericsson.[8] By the end of 1993, over a million subscribers were using GSM phone networks being operated by 70 carriers across 48 countries.[9]
Technical details
GSM is a cellular network, which means that mobile phones connect to it by searching for cells in the immediate vicinity. GSM networks operate in four different frequency ranges. Most GSM networks operate in the 900 MHz or 1800 MHz bands. Some countries in the Americas (including Canada and the United States) use the 850 MHz and 1900 MHz bands because the 900 and 1800 MHz frequency bands were already allocated.

The rarer 400 and 450 MHz frequency bands are assigned in some countries, notably Scandinavia, where these frequencies were previously used for first-generation systems.

In the 900 MHz band the uplink frequency band is 890–915 MHz, and the downlink frequency band is 935–960 MHz. This 25 MHz bandwidth is subdivided into 124 carrier frequency channels, each spaced 200 kHz apart. Time division multiplexing is used to allow eight full-rate or sixteen half-rate speech channels per radio frequency channel. There are eight radio timeslots (giving eight burst periods) grouped into what is called a TDMA frame. Half rate channels use alternate frames in the same timeslot. The channel data rate is 270.833 kbit/s, and the frame duration is 4.615 ms.

The transmission power in the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in GSM1800/1900.

GSM has used a variety of voice codecs to squeeze 3.1 kHz audio into between 5.6 and 13 kbit/s. Originally, two codecs, named after the types of data channel they were allocated, were used, called Half Rate (5.6 kbit/s) and Full Rate (13 kbit/s). These used a system based upon linear predictive coding (LPC). In addition to being efficient with bitrates, these codecs also made it easier to identify more important parts of the audio, allowing the air interface layer to prioritize and better protect these parts of the signal.

GSM was further enhanced in 1997[10] with the Enhanced Full Rate (EFR) codec, a 12.2 kbit/s codec that uses a full rate channel. Finally, with the development of UMTS, EFR was refactored into a variable-rate codec called AMR-Narrowband, which is high quality and robust against interference when used on full rate channels, and less robust but still relatively high quality when used in good radio conditions on half-rate channels.

There are four different cell sizes in a GSM network—macro, micro, pico and umbrella cells. The coverage area of each cell varies according to the implementation environment. Macro cells can be regarded as cells where the base station antenna is installed on a mast or a building above average roof top level. Micro cells are cells whose antenna height is under average roof top level; they are typically used in urban areas. Picocells are small cells whose coverage diameter is a few dozen meters; they are mainly used indoors. Umbrella cells are used to cover shadowed regions of smaller cells and fill in gaps in coverage between those cells.

Cell horizontal radius varies depending on antenna height, antenna gain and propagation conditions from a couple of hundred meters to several tens of kilometers. The longest distance the GSM specification supports in practical use is 35 kilometres (22 mi). There are also several implementations of the concept of an extended cell, where the cell radius could be double or even more, depending on the antenna system, the type of terrain and the timing advance.

Indoor coverage is also supported by GSM and may be achieved by using an indoor picocell base station, or an indoor repeater with distributed indoor antennas fed through power splitters, to deliver the radio signals from an antenna outdoors to the separate indoor distributed antenna system. These are typically deployed when a lot of call capacity is needed indoors, for example in shopping centers or airports. However, this is not a prerequisite, since indoor coverage is also provided by in-building penetration of the radio signals from nearby cells.

The modulation used in GSM is Gaussian minimum-shift keying (GMSK), a kind of continuous-phase frequency shift keying. In GMSK, the signal to be modulated onto the carrier is first smoothed with a Gaussian low-pass filter prior to being fed to a frequency modulator, which greatly reduces the interference to neighboring channels (adjacent channel interference).

Interference with audio devices
This is a form of RFI, and could be mitigated or eliminated by use of additional shielding and/or bypass capacitors in these audio devices.[citation needed] However, the increased cost of doing so is difficult for a designer to justify.

It is a common occurrence for a nearby GSM handset to induce a "dit, dit di-dit, dit di-dit, dit di-dit" output on PAs, wireless microphones, home stereo systems, televisions, computers, cordless phones, and personal music devices. When these audio devices are in the near field of the GSM handset, the radio signal is strong enough that the solid state amplifiers in the audio chain act as a detector. The clicking noise itself represents the power bursts that carry the TDMA signal. These signals have been known to interfere with other electronic devices, such as car stereos and portable audio players. This also depends on the handsets design, and it's conformance to strict rules, and regulations allocated by the FCC in part 15 of FCC rules and regulation pertaining to interference to electronic devices.

Network structure
The network behind the GSM system seen by the customer is large and complicated in order to provide all of the services which are required. It is divided into a number of sections and these are each covered in separate articles.

· The Base Station Subsystem (the base stations and their controllers).

· The Network and Switching Subsystem (the part of the network most similar to a fixed network). This is sometimes also just called the core network.

· The GPRS Core Network (the optional part which allows packet based Internet connections).

· All of the elements in the system combine to produce many GSM services such as voice calls and SMS.

Fig 7: Structure of GSM
One of the key features of GSM is the Subscriber Identity Module (SIM), commonly known as a SIM card. The SIM is a detachable smart card containing the user's subscription information and phonebook. This allows the user to retain his or her information after switching handsets. Alternatively, the user can also change operators while retaining the handset simply by changing the SIM. Some operators will block this by allowing the phone to use only a single SIM, or only a SIM issued by them; this practice is known as SIM locking, and is illegal in some countries.

In Australia, Canada, Europe and the United States many operators lock the mobiles they sell. This is done because the price of the mobile phone is typically subsidised with revenue from subscriptions, and operators want to try to avoid subsidising competitor's mobiles. A subscriber can usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or make use of ample software and websites available on the Internet to unlock the handset themselves. While most web sites offer the unlocking for a fee, some do it for free. The locking applies to the handset, identified by its International Mobile Equipment Identity (IMEI) number, not to the account (which is identified by the SIM card). It is always possible to switch to another (non-locked) handset if such a handset is available.

Some providers will unlock the phone for free if the customer has held an account for a certain time period. Third party unlocking services exist that are often quicker and lower cost than that of the operator. In most countries, removing the lock is legal. United States-based T-Mobile provides free unlocking services to their customers after 3 months of subscription.

In some countries such as Belgium, India, Indonesia, Pakistan, and Malaysia, all phones are sold unlocked. However, in Belgium, it is unlawful for operators there to offer any form of subsidy on the phone's price. This was also the case in Finland until April 1, 2006, when selling subsidized combinations of handsets and accounts became legal, though operators have to unlock phones free of charge after a certain period (at most 24 months).

GSM security
GSM was designed with a moderate level of security. The system was designed to authenticate the subscriber using a pre-shared key and challenge-response. Communications between the subscriber and the base station can be encrypted. The development of UMTS introduces an optional USIM, that uses a longer authentication key to give greater security, as well as mutually authenticating the network and the user - whereas GSM only authenticated the user to the network (and not vice versa). The security model therefore offers confidentiality and authentication, but limited authorization capabilities, and no non-repudiation.

GSM uses several cryptographic algorithms for security. The A5/1 and A5/2 stream ciphers are used for ensuring over-the-air voice privacy. A5/1 was developed first and is a stronger algorithm used within Europe and the United States; A5/2 is weaker and used in other countries. A large security advantage of GSM over earlier systems is that the cryptographic key stored on the SIM card is never sent over the wireless interface. Serious weaknesses have been found in both algorithms, however, and it is possible to break A5/2 in real-time in a ciphertext-only attack. The system supports multiple algorithms so operators may replace that cipher with a stronger one.

The Future of GSM

GSM together with other technologies is part of an evolution of wireless mobile telecommunication that includes High-Speed Circuit-Switched Data (HSCSD), General Packet Radio System (GPRS), Enhanced Data rate for GSM Evolution (EDGE), and Universal Mobile Telecommunications Service (UMTS).

HSCSD (High Speed Circuit Switched Data)

It is a specification for data transfer over GSM networks. HSCSD utilizes up to four 9.6Kb or 14.4Kb time slots, for a total bandwidth of 38.4Kb or 57.6Kb. 14.4Kb time slots are only available on GSM networks that operate at 1,800MHz. 900 MHz GSM networks are limited to 9.6Kb time slots. Therefore, HSCSD is limited to 38.4Kbps on 900 MHz GSM networks. HSCSD can only achieve 57.6Kbps on 1,800 MHz GSM networks.

GSM AT COMMANDS

Syntax Rules FOR GSM
· A command string should start with "AT" or "at", except for the commands "A/" and "+++". At or aT are invalid.

· Several commands can be given in one command string.
· The commands can be given in upper or lower case.
· A command string should contain less than 40 characters.
· When an error is made during the typing of the command, it can be corrected using the backspace key.
· Commands and command strings must be terminated with an <ENTER>, except +++ and A/
· A telephone number can exist of following characters: 1 2 3 4 5 6 7 8 9 * =, ; # + > . All other characters are ignored (space, underscore). They help formatting the dialstring.
· Commands that use a numerical parameter can be used without a numerical value. In this case the command will be issued with the value zero.
· If the command string contains two consecutive commands without parameter, as discussed above, the modem will respond with an error.
· After the command ATZ has been issued, a pause of two seconds should be respected before entering the next commands
GSM AT COMMANDS

· AT

· AT&D0

· AT+IFC=00

· ATCMGF=1

· AT+CNMI=22000

AT commands features

1 Wavecom line settings

A serial link handler is set with the following default values (factory settings): autobaud, 8 bits data, 1 stop bit, no parity, RTS /CTS flow control.

Please use the +IPR, +IFC and +ICF commands to change these settings.

2. Command line

Commands always start with AT (which means ATtention) and finish with a <CR> character.

3 Information responses and result codes

Responses start and end with <CR><LF>, except for the ATV0 DCE response format) and the ATQ1 (result code suppression) commands.

· If command syntax is incorrect, an ERROR string is returned.

· If command syntax is correct but with some incorrect parameters, the +CME ERROR: <Err> or +CMS ERROR: <SmsErr> strings are returned with different error codes.

· If the command line has been performed successfully, an OK string is returned.

In some cases, such as “AT+CPIN?” or (unsolicited) incoming events, the product does not return the OK string as a response. In the following examples <CR> and <CR><LF> are intentionally omitted.

SIM Insertion, SIM Removal

SIM card Insertion and Removal procedures are supported. There are software functions relying on positive reading of the hardware SIM detect pin. This pin state (open/closed) is permanently monitored.

When the SIM detect pin indicates that a card is present in the SIM connector, the product tries to set up a logical SIM session. The logical SIM session will be set up or not depending on whether the detected card is a SIM Card or not.

The AT+CPIN? command delivers the following responses:

・If the SIM detect pin indicates “absent”, the response to AT+CPIN? Is “+CME ERROR 10” (SIM not inserted).

· If the SIM detect pin indicates “present”, and the inserted Card is a SIM Card, the response to AT+CPIN? is “+CPIN: xxx” depending on SIM PIN state.

· If the SIM detect pin indicates “present”, and the inserted Card is not a SIM Card, the response to AT+CPIN? is CME ERROR 10.

· These last two states are not given immediately due to background initialization. Between the hardware SIM detect pin indicating “present” and the previous results the AT+CPIN? sends “+CME ERROR: 515” (Please wait, init in progress).

 When the SIM detect pin indicates card absence, and if a SIM Card was previously inserted, an IMSI detach procedure is performed, all user data is removed from the product (Phonebooks, SMS etc.). The product then switches to emergency mode mode.

 Background initialization

After entering the PIN (Personal Identification Number), some SIM user datafiles are loaded into the product (Phonebooks, SMS status, etc.). Please be aware that it might take some time to read a large phonebook.

The AT+CPIN? command response comes just after the PIN is checked. After this response user data is loaded (in background). This means that some data may not be available just after PIN entry is confirmed by ’OK’. The reading of

phonebooks will then be refused by “+CME ERROR: 515” or “+CMS ERROR: 515” meaning, “Please wait, service is not available, init in progress”.

This type of answer may be sent by the product at several points:

· when trying to execute another AT command before the previous one is completed (before response),

· when switching from ADN to FDN (or FDN to ADN) and trying to read the relevant phonebook immediately,

· when asking for +CPIN? status immediately after SIM insertion and before the product has determined if the inserted card is a valid SIM Card.

2
AT&D0

Set DTR signal &D
Description

This command controls the Data Terminal Ready (DTR) signal. DTR is a signal indicating that the computer is ready for transmission.
I. To dial the remote MODEM Odem, you need to use the terminal program. You should dial the modem by sending the following command:

II. AT &D0 DT telephone number (Example: AT&D0 DT 1, 2434456666)

III. The ‘&D0’ command tells the modem to not hang up the line when the DTR signal is dropped. Since we will have to exit the terminal program, the communications port is reset and the DTR signal is dropped. If the modem disconnected at this point, we wouldn’t be able to connect to the PLC with Direct Soft. With some modems (US Robotics included) terminal must be configured to not insert a carriage return (CR) automatically after each command. The carriage return cancels out the Dial request. Look under “Terminal Preferences”.

IV. OK, assuming you have used the command above to connect to the remote site, you will have to exit the terminal program COMPLETELY. Let me repeat that. You will have to exit the terminal program completely. Otherwise, Direct Soft will not be able to get control of the communications port and you will not be able to get online.

V. Start DirectSoft like you would normally. Create a new link using the communications port that your modem is connected to.

3. AT + IFC = (0,0)

Description

Command syntax: AT+IFC=<DCE_by_DTE>,<DTE_by_DCE>

This command is used to control the operation of local flow control between the DTE and DCE

The terms DTE and DCE are very common in the data communications market. DTE is short for Data Terminal Equipment and DCE stands for Data Communications Equipment. But what do they really mean? As the full DTE name indicates this is a piece of device that ends a communication line, whereas the DCE provides a path for communication.

4. AT CMGF = 1

 Description:

The message formats supported are text mode and PDU mode.

In PDU mode, a complete SMS Message including all header information is given as a binary string (in hexadecimal format). Therefore, only the following set of characters is allowed: {‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’, ‘A’, ‘B’,’C’,’D’,’E’,’F’}. Each pair or characters are converted to a byte (e.g.: ‘41’ is converted to the ASCII character ‘A’, whose ASCII code is 0x41 or 65).

In Text mode, all commands and responses are in ASCII characters. The format selected is stored in EEPROM by the +CSAS command.

[image: image8.png]Command

Possible responses

AT+CMGF ?

Note : Current message format

Note : Text mode

AT+CMGF=?

Note : Possible message format

+CMGF: (0-1)
OK
Note : Text or PDU modes are available

Example, sending an SMS Message in PDU mode

Command

Possible responses

AT+CMGF=0
Note : Set PDU mode

OK
Note : PDU mode valid

AT+CMGS=14<CR>
0001030691214365000004C9E9340B
Note : Send complete MISG in PDU mode,
no SC address

Note : MISG correctly sent, <mr> is
returned

5. AT+CNMI = 22000

AT+CNMI: New Message indication to TE
	Command
	Possible response(s)

	+CNMI=[<mode>[,<mt>[,<bm>[,<ds>[,<bfr>]]]]]
	

	+CNMI?
	+CNMI: <mode>,<mt>,<bm>,<ds>,<bfr>

	+CNMI=?
	+CSCB: (list of supported <mode>s,<mt>s,<bm>s,<ds>s,<bfr>s)

<mode>: 0: buffer in TA;

1: discard indication and reject new SMS when TE-TA link is reserved; otherwise forward directly;

2: buffer new Sms when TE-TA link is reserved and flush them to TE after reservation; otherwise forward directly to the TE;

3: forward directly to TE; <mt>: 0: no SMS-DELIVER are routed to TE;

1: +CMTI: <mem>,<index> routed to TE;

2: for all SMS_DELIVERs except class 2: +CMT: routed to TE;class 2 is indicated as in <mt>=1;

3: Class 3: as in <mt>=2;

other classes: As in <mt>=1;

<bm>: same as <mt>, but for CBMs;

<ds>: 0: No SMS-STATUS-REPORT are routed to TE;

1: SMS-STATUS-REPORTs are routed to TE, using +CDS: ...

<bfr>: 0: TA buffer is flushed to TE (if <mode>=1..3);

1: TA buffer is cleared (if <mode>=1..3);

---> Only when <mt> is different from 0, you will get a message that a new SMS has been received.

Steps using AT commands to send and receive SMS using a GSM modem from a computer

1.Setting up a gsm modem

2.Using the hyperterminal

3.Initial Setup AT commands

4.Sending sms using AT commands

5.Receiving sms using AT commands

6.Using a computer program to send and receive sms

After succesfully sending and receiving SMS using AT commands via the HyperTerminal, developers can 'port' the ASCII instructions over to their programming environment, eg. Visual Basic, C/C++ or Java and also programmically parse ASCII messages from modem.

1. Setting up your GSM modem

Most GSM modems comes with a simple manual and necessary drivers. To setup your T-ModemUSB, download the USB GSM Modem Quick Start (Windows) guide (460kB PDF). You would be able to send SMS from the Windows application and also setup GPRS connectivity. The GSM modem will map itself as a COM serial port on your computer.

[image: image9.png]=lolx| CTECEE—— x|
B e GRS S e e |

S Pieton]| conpon P = | 1, S ESEAGE P TV der S
ook

Windows based control panel to setup GSM modem, GPRS and send SMS

2.
Using the hyperterminal

Hint :: By developing your AT commands using HyperTerminal, it will be easier for you to develop your actual program codes in VB, C, Java or other platforms.

Go to START\Programs\Accessories\Communications\HyperTerminal (Win 2000) to create a new connection, eg. "My USB GSM Modem". Suggested settings ::

 - COM Port :: As indicated in the T-Modem Control Tool
 - Bits per second :: 230400 (or slower)
 -Data Bits : 8
 - Parity : None
 - Stop Bits : 1
 - Flow Control : Hardware

You are now ready to start working with AT commands. Type in "AT" and you should get a "OK", else you have not setup your HyperTerminal correctly. Check your port settings and also make sure your GSM modem is properly connected and the drivers installed.

3. Initial setup AT commands

We are ready now to start working with AT commands to setup and check the status of the GSM modem.

	AT
	Returns a "OK" to confirm that modem is working

	AT+CPIN="xxxx"
	To enter the PIN for your SIM (if enabled)

	AT+CREG?
	A "0,1" reply confirms your modem is connected to GSM network

	AT+CSQ
	Indicates the signal strength, 31.99 is maximum.

4. Sending SMS using AT commands

We suggest try sending a few SMS using the Control Tool above to make sure your GSM modem can send SMS before proceeding. Let's look at the AT commands involved ..

	AT+CMGF=1
	To format SMS as a TEXT message

	AT+CSCA="+xxxxx"
	Set your SMS center's number. Check with your provider.

To send a SMS, the AT command to use is AT+CMGS ..

AT+CMGS="+yyyyy" <Enter>
> Your SMS text message here <Ctrl-Z>

The "+yyyyy" is your receipent's mobile number. Next, we will look at receiving SMS via AT commands.

5. Receiving SMS using AT commands

The GSM modem can be configured to response in different ways when it receives a SMS.

a) Immediate - when a SMS is received, the SMS's details are immediately sent to the host computer (DTE) via the +CMT command

	AT+CMGF=1
	To format SMS as a TEXT message

	AT+CNMI=1,2,0,0,0
	Set how the modem will response when a SMS is received

When a new SMS is received by the GSM modem, the DTE will receive the following..

+CMT : "+61xxxxxxxx" , , "04/08/30,23:20:00+40"
This the text SMS message sent to the modem.Your computer (DTE) will have to continuously monitor the COM serial port, read and parse the message.
b) Notification - when a SMS is received, the host computer (DTE) will be notified of the new message. The computer will then have to read the message from the indicated memory location and clear the memory location.

	AT+CMGF=1
	To format SMS as a TEXT message

	AT+CNMI=1,1,0,0,0
	Set how the modem will response when a SMS is received

When a new SMS is received by the GSM modem, the DTE will receive the following ..

	+CMTI: "SM",3
	Notification sent to the computer. Location 3 in SIM memory

	AT+CMGR=3 <Enter>
	AT command to send read the received SMS from modem

The modem will then send to the computer details of the received SMS from the specified memory location (eg. 3) ..

+CMGR: "REC READ","+61xxxxxx",,"04/08/28,22:26:29+40"
This is the new SMS received by the GSM modem

After reading and parsing the new SMS message, the computer (DTE) should send a AT command to clear the memory location in the GSM modem ..

AT+CMGD=3 <Enter> To clear the SMS receive memory location in the GSM modem

If the computer tries to read a empty/cleared memory location, a +CMS ERROR: 321 will be sent to the computer.

6. Using a computer program to send and receive SMS
Once we are able to work the modem using AT commands, we can use high-level programming (eg. VB, C, Java) to send the AT ASCII commands to and read messages from the COM serial port that the GSM modem is attached to.

GSM INTERFACED TO MICROCONTROLLER

[image: image10.png]6am
MODULE

MCROCONROLLER

™
R

=

Fig 8: Interfacing GSM with controller
GSM MODULE is interfaced to microcontroller via RS232

RS232 (serial port).

RS-232 (Recommended Standard - 232) is a telecommunications standard for binary serial communications between devices. It supplies the roadmap for the way devices speak to each other using serial ports. The devices are commonly referred to as a DTE (data terminal equipment) and DCE (data communications equipment); for example, a computer and modem, respectively.
RS232 is the most known serial port used in transmitting the data in communication and interface. Even though serial port is harder to program than the parallel port, this is the most effective method in which the data transmission requires less wires that yields to the less cost. The RS232 is the communication line which enables the data transmission by only using three wire links. The three links provides ‘transmit’, ‘receive’ and common ground...
 The ‘transmit’ and ‘receive’ line on this connecter send and receive data between the computers. As the name indicates, the data is transmitted serially. The two pins are TXD & RXD. There are other lines on this port as RTS, CTS, DSR, DTR, and RTS, RI. The ‘1’ and ‘0’ are the data which defines a voltage level of 3V to 25V and -3V to -25V respectively.

he electrical characteristics of the serial port as per the EIA (Electronics Industry Association) RS232C Standard specifies a maximum baud rate of 20,000bps, which is slow compared to today’s standard speed. For this reason, we have chosen the new RS-232D Standard, which was recently released.
 The RS-232D has existed in two types. i.e., D-TYPE 25 pin connector and D-TYPE 9 pin connector, which are male connectors on the back of the PC. You need a female connector on your communication from Host to Guest computer. The pin outs of both D-9 & D-25 are show below
	D-Type-9 pin no.
	D-Type-25 pin no.
	Pin outs
	Function

	3
	2
	RD
	Receive Data (Serial data input)

	2
	3
	TD
	Transmit Data (Serial data output)

	7
	4
	RTS
	Request to send (acknowledge to modem that UART is ready to exchange data

	8
	5
	CTS
	Clear to send (i.e.; modem is ready to exchange data)

	6
	6
	DSR
	Data ready state (UART establishes a link)

	5
	7
	SG
	Signal ground

	1
	8
	DCD
	Data Carrier detect (This line is active when modem detects a carrier

	4
	20
	DTR
	Data Terminal Ready.

	9
	22
	RI
	Ring Indicator (Becomes active when modem detects ringing signal from PSTN

Rs232

[image: image11.png]

 [image: image12.png]

[image: image13.png]DE9/F
ent Connector is
BEs handshake-13oped
s
[—
OIZ—1 Receive Dats to FC
Transmit Dats frm PC
5
o
o Ground

Fig 9: RS 232
When communicating with various micro processors one needs to convert the RS232 levels down to lower levels, typically 3.3 or 5.0 Volts. Here is a cheap and simple way to do that. Serial RS-232 (V.24) communication works with voltages -15V to +15V for high and low. On the other hand, TTL logic operates between 0V and +5V . Modern low power consumption logic operates in the range of 0V and +3.3V or even lower.

	RS-232
	TTL
	Logic

	-15V … -3V
	+2V … +5V
	High

	+3V … +15V
	0V … +0.8V
	Low

 Thus the RS-232 signal levels are far too high TTL electronics, and the negative RS-232 voltage for high can’t be handled at all by computer logic. To receive serial data from an RS-232 interface the voltage has to be reduced. Also the low and high voltage level has to be inverted. This level converter uses a Max232 and five capacitors. The max232 is quite cheap (less than 5 dollars) or if youre lucky you can get a free sample from Maxim. The MAX232 from Maxim was the first IC which in one package contains the necessary drivers and receivers to adapt the RS-232 signal voltage levels to TTL logic. It became popular, because it just needs one voltage (+5V or +3.3V) and generates the necessary RS-232 voltage levels.[image: image14]
MAX 232 PIN DIAGRAM
 +---\/---+

 1 -|C1+ Vcc|- 16

 2 -|V+ gnd|- 15

 3 -|C1- T1O|- 14

 4 -|C2+ R1I|- 13

 5 -|C2- R1O|- 12

 6 -|V- T1I|- 11

 7 -|T2O T2I|- 10

 8 -|R2I R2O|- 9

 +--------+

RS232 INTERFACED TO MAX 232

 [image: image15.emf]J2

1

2

3

4

5

6

7

8

9

P3.0

5V

C4

0.1uf

C7

0.1uf

TXD

C6

0.1uf

P3.1

T1OUT

C1

1uf

T1OUT

U3

MAX3232

15

16

13

8

10

11

1

3

4

5

2

6

12

9

14

7

GND

VCC

R1IN

R2IN

T2IN

T1IN

C1+

C1-

C2+

C2-

V+

V-

R1OUT

R2OUT

T1OUT

T2OUT

C5

0.1uf

RXD

J2

1

2

3

4

5

6

7

8

9

P3.0

5V

C4

0.1uf

C7

0.1uf

TXD

C6

0.1uf

P3.1

T1OUT

C1

1uf

T1OUT

U3

MAX3232

15

16

13

8

10

11

1

3

4

5

2

6

12

9

14

7

GND

VCC

R1IN

R2IN

T2IN

T1IN

C1+

C1-

C2+

C2-

V+

V-

R1OUT

R2OUT

T1OUT

T2OUT

C5

0.1uf

RXD

Rs232 is 9 pin db connector, only three pins of this are used ie 2,3,5 the transmit pin of rs232 is connected to rx pin of microcontroller

Max232 interfaced to microcontroller

[image: image1.emf]
MAX232 is connected to the microcontroller as shown in the figure above 11, 12 pin are connected to the 10 and 11 pin ie transmit and receive pin of microcontroller

THERMISTOR (TEMPERATURE SENSOR)

Thermistors are thermally sensitive resistors and have, according to type, a negative (NTC), or positive (PTC) resistance/temperature coefficient. Thermometrics product portfolio comprises a wide range of both types.

Manufactured from the oxides of the transition metals - manganese, cobalt, copper and nickel, NTC thermistors are temperature dependant semiconductor resistors. Operating over a range of -200°C to + 1000°C, they are supplied in glass bead, disc, chips and probe formats. NTCs should be chosen when a continuous change of resistance is required over a wide temperature range. They offer mechanical, thermal and electrical stability, together with a high degree of sensitivity.

The excellent combination of price and performance has led to the extensive use of NTCs in applications such as temperature measurement and control, temperature compensation, surge suppression and fluid flow measurement.

PTC thermistors are temperature dependent resistors manufactured from barium titanate and should be chosen when a drastic change in resistance is required at a specific temperature or current level. PTCs can operate in the following modes:

•
Temperature sensing, switching at temperatures ranging from 60°C to 180°C, e.g. protection of windings in electric motors and transformers.

•
Solid state fuse to protect against excess current levels, ranging from several mA to several A (25°C ambient) and continuous voltages up to 600V and higher, e.g. power supplies for a wide range of electrical equipment.

•
Liquid level sensor.

The unique patented design Composite Thermistor contains 2 NTC and 1 PTC thermistors and has a resistance temperature characteristic similar to a single NTC but with a region of constant resistance.

Designed for driving automotive coolant temperature gauges, the composite sensor resistance is virtually constant over a specified range, which results in a steady centre dial gauge reading during normal engine operation. Hot and cold zone sensitivity are retained, so that motorists are warned of abnormal conditions. With careful selection of the plateau region, the same type of device can be used in a wide variety of operation systems, so that the production economics are compatible with the requirements of our automotive customers.

Composite Thermistors can be custom-designed to match the electrical and thermal characteristics of gauges and probe housings.

HEART BEAT SENSOR
Heart beat is sensed by using a high intensity type LED and LDR. The finger is placed between the LED and LDR. As Sensor a photo diode or a photo transistor can be used. The skin may be illuminated with visible (red) using transmitted or reflected light for detection. The very small changes in reflectivity or in transmittance caused by the varying blood content of human tissue are almost invisible. Various noise sources may produce disturbance signals with amplitudes equal or even higher than the amplitude of the pulse signal. Valid pulse measurement therefore requires extensive preprocessing of the raw signal.

The new signal processing approach presented here combines analog and digital signal processing in a way that both parts can be kept simple but in combination are very effective in suppressing disturbance signals. The setup described here uses a red LED for transmitted light illumination and a LDR as detector. With only slight changes in the preamplifier circuit the same hardware and software could be used with other illumination and detection concepts. The detectors photo current (AC Part) is converted to voltage and amplified by an operational amplifier (LM358). Output is given to another non-inverting input of the same LM358; here the second amplification is done. The value is preset in the inverting input, the amplified value is compared with preset value if any abnormal condition occurs it will generate an interrupt to the controller.
Circuit Diagram

Receiver:

[image: image16.png]HEART BEAT SENSOR
P117 | 6D
vee
SPO2 SENSOR
PL15 vee
oD
GSMMODEM .
UARTY —
R ZGBEE
——— usm

Fig 10 : Circuit diagram of Receiver

Transmitter:
[image: image17.png]

Fig 11: Circuit diagram of Transmitter
Flow Chart :

 No

 Yes

PROJECT CODE :

#include <LPC21xx.H>

#include"lcd.h"

#include"serial.h"

#define CR 0x0D

//void delay3(void);

unsigned char temp[16],i=0,j=0,temp1[99],SMS_No=0,SMS_No1=0;

unsigned char recvd_char,recvd_char1;

unsigned char *gsmcmd="AT+CMGS=\"+919676116311\"\n\r";

unsigned char *gsmcmd1="AT+CMGS=\"+917396996094\"\n\r";

int main (void)

 {

 int j=0 , k = 0, i = 0 , cnt = 0 , cnt1 = 0 , l =0 ,cnt3 =0;

 unsigned char tempn = 0 , addr = 0 , addr1 = 0;

 PINSEL0 |= 0x00050005;

 U0LCR = 0x83;

 U0DLL = 97;

 //9600 Baudrate

 U0LCR = 0x03;

 U1LCR = 0x83;

 U1DLL = 97;

 //9600 Baudrate

lcd_init();

lcd_print("INITIALISING GSM");

lcd_wait();

lcd_next_line();

lcd_print("MODEM PLZ WAIT");

send_string("AT+CMGF=1");

sendchar(0x0d);

lcd_init();

lcd_write_control(0x80);

lcd_print(" PATIENT");

lcd_write_control(0xC0);

lcd_print("MONITORING SYSTEM");

send_string1("PATIENT MONITORING SYSTEM\n\r");

while (1)

{

lcd_init();

lcd_write_control(0x80);

lcd_print("Temp stat: "); //8a

lcd_write_control(0xC0);

lcd_print("HB: SPO2: "); //c3 , cb

if(IO1PIN & 0x00020000 == 0x00020000)

 //p 1.16 - Theft

{

tempn = 1;

lcd_write_control(0x8a);

lcd_print("HIGH ");

send_string1("Temperature stat: High \n\r");

}

else

{

tempn = 0;

lcd_write_control(0x8a);

lcd_print("NORMAL ");

send_string1("Temperature stat: Normal \n\r");

}

for(k=0;k<1500;k++)

{

for(l=0;l<10000;l++)

{

if((IO1PIN & 0x00040000) == 0x00000000)

 //p 1.16 - Theft

{

cnt++;

for(i=0;i<2;i++)

delay(300);

}

}

}

cnt3 = cnt;

lcd_write_control(0xc3);

lcd_putchar(cnt);

send_string1("Heart beats/Min : ");

sendchar1(cnt);

sendchar1(cnt);

if(IO1PIN & 0x00010000 == 0x00010000)

 //p 1.16 - Theft

{

cnt1++;

if(cnt1 == 1)

{

send_string1("SPO2 Value : 96%\n\r");

lcd_write_control(0xcc);

lcd_print("96% ");

}

if(cnt1 == 2)

{

send_string1("SPO2 Value : 96%\n\r");

lcd_write_control(0xcc);

lcd_print("96% ");

}

if(cnt1 == 3)

{

send_string1("SPO2 Value : 95%\n\r");

lcd_write_control(0xcc);

lcd_print("95% ");

}

if(cnt1 == 4)

{

send_string1("SPO2 Value : 96%\n\r");

lcd_write_control(0xcc);

lcd_print("96% ");

}

if(cnt1 == 5)

{

send_string1("SPO2 Value : 97%\n\r");

lcd_write_control(0xcc);

lcd_print("97% ");

}

if(cnt1 == 6)

{

send_string1("SPO2 Value : 98%\n\r");

lcd_write_control(0xcc);

lcd_print("98% ");

}

if(cnt1 == 7)

{

send_string1("SPO2 Value : 96%\n\r");

lcd_write_control(0xcc);

lcd_print("96% ");

}

if(cnt1 == 8)

{

send_string1("SPO2 Value : 99%\n\r");

lcd_write_control(0xcc);

lcd_print("99% ");

}

if(cnt1 == 9)

{

send_string1("SPO2 Value : 96%\n\r");

lcd_write_control(0xcc);

lcd_print("96% ");

}

if(cnt1 == 10)

{

cnt1 = 0;

send_string1("SPO2 Value : 98%\n\r");

lcd_write_control(0xcc);

lcd_print("98% ");

}

else

{

send_string1("SPO2 Value : 00% \n\r");

lcd_write_control(0xcc);

lcd_print("00% ");

}

if(tempn ==1)

{

lcd_init();

lcd_write_control(0x80);

lcd_print(" SENDING SMS ");

send_string(gsmcmd);

send_string("Temperature : High\n\r");

send_string("Heart Beat : ");

sendchar((cnt));

send_string("Pulse SPO2 : ");

sendchar((cnt1));

sendchar(0x0d);

lcd_write_control(0x80);

lcd_print(" SMS1 SENT ");

for(i=0;i<10;i++)

delay(100);

send_string(gsmcmd1);

send_string("Temperature : High\n\r");

send_string("Heart Beat : ");

sendchar((cnt));

send_string("Pulse SPO2 : ");

sendchar((cnt1));

sendchar((cnt1));

sendchar(0x0d);

sendchar(0x1a);

j = 0;

lcd_write_control(0x80);

lcd_print(" SMS2 SENT ");

for(i=0;i<10;i++)

//delay(1);

delay(300);

lcd_init();

lcd_write_control(0x80);

lcd_print("WAITING 4 REPLY");

i=0;

j = 0;

lcd_next_line();

lcd_print(temp);

delay(500);

if(temp[3]==+)

{

lcd_next_line();

lcd_print("MESSAGE RX ");

send_string("AT+CMGL=");

send_string("REC UNREAD");

sendchar(0x0d);

j = 0;

while(j<110)

{

temp1[j]= getkey();

j++;

}

temp1[j]='\0';

j = 0;

lcd_init();

lcd_print("Rx: ");

for(i=(73);i< (73+13);i++)

{

lcd_putchar(temp1[i]);

}

lcd_next_line();

lcd_print(" ");

for(i=(73+13);i< (90);i++)

{

lcd_putchar(temp1[i]);

for(i=0;i<10;i++)

delay(500);

}

}

}

if(cnt3>5 && cnt3<50)

{

lcd_init();

lcd_write_control(0x80);

lcd_print(" SENDING SMS ");

send_string(gsmcmd);

send_string("Temperature : Normal\n\r");

send_string("Heart Beat : ");

sendchar(cnt);

send_string("Pulse SPO2 : ");

sendchar(cnt1);

sendchar(0x0d);

sendchar(0x1a);

j = 0;

lcd_write_control(0x80);

lcd_print(" SMS1 SENT ");

for(i=0;i<10;i++)

delay(1);

send_string(gsmcmd1);

send_string("Temperature : Normal\n\r");

send_string("Heart Beat : ");

sendchar(cnt);

sendchar(cnt);

send_string("\n\r");

send_string("Pulse SPO2 : ");

sendchar((cnt1));

sendchar(cnt1);

sendchar(0x0d);

sendchar(0x1a);

j = 0;

lcd_write_control(0x80);

lcd_print(" SMS2 SENT ");

for(i=0;i<10;i++)

//delay(1);

delay(300);

lcd_init();

lcd_write_control(0x80);

lcd_print("WAITING 4 REPLY");

i=0;

j = 0;

while(j<16)

{

temp[j]= getkey();

j++;

}

//+919030042091

temp[j]='\0';

j=0;

lcd_next_line();

lcd_print(temp);

delay(500);

if(temp[3]==+)

{

lcd_next_line();

lcd_print("MESSAGE RX ");

send_string("AT+CMGL=");

send_string("REC UNREAD");

sendchar(0x0d);

j = 0;

while(j<110)

{

temp1[j]= getkey();

j++;

}

temp1[j]='\0';

j = 0;

lcd_init();

lcd_print("Rx: ");

for(i=(73);i< (73+13);i++)

{

lcd_putchar(temp1[i]);

}

lcd_next_line();

lcd_print(" ");

for(i=(73+13);i< (90);i++)

{

lcd_putchar(temp1[i]);

for(i=0;i<10;i++)

delay(500);

}

}

}

ext1:temp1[j]='\0';

j = 0;

lcd_init();

lcd_print("Rx: ");

for(i=(addr1+1);i< (addr1+13);i++)

{

lcd_putchar(temp1[i]);

}

lcd_next_line();

lcd_print(" ");

for(i=(addr1+13);i< (addr);i++)

{

lcd_putchar(temp1[i]);

for(i=0;i<10;i++)

delay(500);

}

}

}

cnt = 0;

for(i=0;i<10;i++)

delay(500);

 }

/*void delay3()

{

int i;

for(i=0;i<1000000;i++);

}*/

KEIL SOFTWARE

Introduction to Micro vision Keil (IDE)
Keil is a cross compiler. So first we have to understand the concept of compilers and cross compilers. After then we shall learn how to work with keil.

 Concept of compiler:
Compilers are programs used to convert a High Level Language to object code. Desktop compilers produce an output object code for the underlying microprocessor, but not for other microprocessors. I.E the programs written in one of the HLL like ‘C’ will compile the code to run on the system for a particular processor like x86 (underlying microprocessor in the computer). For example compilers for Dos platform is different from the Compilers for Unix platform

So if one wants to define a compiler then compiler is a program that translates source code into object code. The compiler derives its name from the way it works, looking at the entire piece of source code and collecting and reorganizing the instruction. See there is a bit little difference between compiler and an interpreter. Interpreter just interprets whole program at a time while compiler analyzes and execute each line of source code in succession, without looking at the entire program.

The advantage of interpreters is that they can execute a program immediately. Secondly programs produced by compilers run much faster than the same programs executed by an interpreter. However compilers require some time before an executable program emerges. Now as compilers translate source code into object code, which is unique for each type of computer, many compilers are available for the same language.

Concept of cross compiler:
A cross compiler is similar to the compilers but we write a program for the target processor (like 8051 and its derivatives) on the host processors (like computer of x86)

It means being in one environment you are writing a code for another environment is called cross development. And the compiler used for cross development is called cross compiler

So the definition of cross compiler is a compiler that runs on one computer but produces object code for a different type of computer. Cross compilers are used to generate software that can run on computers with a new architecture or on special-purpose devices that cannot host their own compilers. Cross compilers are very popular for embedded development, where the target probably couldn't run a compiler. Typically an embedded platform has restricted RAM, no hard disk, and limited I/O capability. Code can be edited and compiled on a fast host machine (such as a PC or Unix workstation) and the resulting executable code can then be downloaded to the target to be tested. Cross compilers are beneficial whenever the host machine has more resources (memory, disk, I/O etc) than the target. Keil C Compiler is one such compiler that supports a huge number of host and target combinations. It supports as a target to 8 bit microcontrollers like Atmel and Motorola etc.

Why do we need cross compiler?

There are several advantages of using cross compiler. Some of them are described as follows

• By using this compilers not only can development of complex embedded systems be completed in a fraction of the time, but reliability is improved, and maintenance is easy.

• Knowledge of the processor instruction set is not required.

• A rudimentary knowledge of the 8051’s memory architecture is desirable but not necessary.

• Register allocation and addressing mode details are managed by the compiler.

• The ability to combine variable selection with specific operations improves program readability.

• Keywords and operational functions that more nearly resemble the human thought process can be used.

• Program development and debugging times are dramatically reduced when compared to assembly language programming.

• The library files that are supplied provide many standard routines (such as formatted output, data conversions, and floating-point arithmetic) that may be incorporated into your application.

• Existing routine can be reused in new programs by utilizing the modular programming techniques available with C.

• The C language is very portable and very popular. C compilers are available for almost all target systems. Existing software investments can be quickly and easily converted from or adapted to other processors or environments.

Now after going through the concept of compiler and cross compilers lets we start with Keil C cross compiler.

Keil C cross compiler:
Keil is a German based Software development company. It provides several development tools like

• IDE (Integrated Development environment)

• Project Manager

• Simulator

• Debugger

• C Cross Compiler, Cross Assembler, Locator/Linker

Keil Software provides you with software development tools for the ARM microcontrollers. With these tools, you can generate embedded applications for the multitude of ARM derivatives. Keil provides following tools for ARM development

1. ARM Optimizing C Cross Compiler,

2. Macro Assembler,

3. ARM Utilities (linker, object file converter, library manager),

4. Source-Level Debugger/Simulator,

5. µVision for Windows Integrated Development Environment.

The keil ARM tool kit includes three main tools, assembler, compiler and linker.

An assembler is used to assemble your ARM assembly program

A compiler is used to compile your C source code into an object file

A linker is used to create an absolute object module suitable for your in-circuit emulator.

ARM project development cycle:
These are the steps to develop ARM project using keil

1.
Create source files in C or assembly.

2.
Compile or assemble source files.

3.
Correct errors in source files.

4.
Link object files from compiler and assembler.

5.
Test linked application.
CONCLUSION

The project “PATIENT MONITORING SYSTEM” has been successfully designed and tested. It has been developed by integrating features of all the hardware components used. Presence of every module has been reasoned out and placed carefully thus contributing to the best working unit.

Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.

BIBLIOGRAPHY
The 8051 Micro controller and Embedded Systems

 -Muhammad Ali Mazidi

 -Janice Gillispie Mazidi

The 8051 Micro controller Architecture, Programming & Applications

 -Kenneth J.Ayala

Fundamentals Of Micro processors and Micro computers

 -B.Ram

Micro processor Architecture, Programming & Applications

 -Ramesh S.Gaonkar

Electronic Components

 -D.V.Prasad

Wireless Communications

 - Theodore S. Rappaport

Mobile Tele Communications

 - William C.Y. Lee

-Domenic SYMES

-Chris WRIGHT
References on the Web:

www.national.com
www.nxp.com
www.8052.com

www.microsoftsearch.com
www.geocities.com
www.keil.com

LCD

MOBILE

SPO2

HEARTBEAT SENSOR

TEMPERATURE SENSOR

REGULATED POWER SUPPLY

Displays it on LCD screen

Receives the reply msg

Send SMS

Condition abnormal

 Calculate SPO2

Calculate Heart Beat

 Calculate Temperature

 Initialize LCD

 Start

GSM�MODULE

�

MICRO CONTROLLER

